Instruction Manual for A6000 Series Universal Digital Panel Meters
 Units for Measurement of Small DC and AC Currents

```
\! Caution
(1) Applying a voltage or current exceeding its maximum permissible value may cause the unit to be damaged.
(2) Always use the unit within the specified voltage range; otherwise, it may cause a fire, electric shock or personal/equipment damage
(3) For the purpose of functional improvement, the information written herein may be changed without prior notice
(4) Information contained herein is considered accurate to the best of our knowledge. If you have any question or comment on the information, please contact us or our distributor.
(5) Read this manual carefully and thoroughly before starting to operate the unit, and keep the manual available for future reference.
```


1 Before Using the Unit

Thank you for purchasing our quality designed and manufactured A6000 Series. Before unpacking the unit, check for damages during transportation. If you have noticed any damage, directly contact us or our distributor.

1.1 Type Identification

Each model number of the A6000 series has its general specifications, and the following describes each note and the meaning. Before using the unit, check that the model number and specifications of the delivered unit match those of the product you ordered. For optional units, see the separate instruction Manuals.
1.2 Accessories

Accessory	Quantity	Remarks
6-p terminal cover	2 or 3 each	2 without a comparator output 3 with a comparator output
Mounting band	2 pieces	
Unit indication label	1 each	

2 Mounting Method

2.1 Panel Cut Size

Cut the panel to mount the A6000 series in accordance with the illustration below:

2.2 How to Mount the Unit on the Panel

Mount the A6000 series to the panel in accordance with the illustration

 below:(1) Remove the mounting band and insert the case from the front of the panel.

(2) Fix the case using the mounting band from the rear of the panel.

\triangle Caution
(1) The recommended panel thickness is 0.8 to 5 mm .
(2) Do not install the unit in locations where it is exposed to direct sunlight; where ambient emperature or humidity doesn't meet the requirements below; or where a drastic change in temperature may ause condensation. Ambient temperature: 0 to 50°
(3) Do not install the unit where it is exposed to dust, particles, chemicals harmful to electric components, corrosive gases, etc.
(4) When this unit is installed inside other equipment, pay attention to the heat When this unit is installed inside other equipment, pay attention
radiation and keep the heat inside the equipment $50^{\circ} \mathrm{C}$ or below.
(5) Do not install the unit where it is exposed to excessive vibration or shock
(6) Install the unit horizontally; otherwise, ventilation will be adversely affected and

3 Terminals and Connections

3.1 Power supply connections

3.2 Input Signal Connections

3.3 Comparator Output Connections

3.4 Option connections

For connections of the options, see separate optional function instruction Manuals.

4 Parameter Settings

4.1 Multi Display Unit

Names and major functions

How to set a low layer value (Condition data/scaling data/comparator data)

Remarks:

※The multi display unit can also follow the operation procedure of the single display unit operation system.
※Comparator judgment values can be set not only from Jog 2 and Jog 3 but also from the low layers of the comparator data.
※For operation procedures in the memory mode (maximum value/minimum value/(maximum value-minimum value)),
see the operation procedure diagram of the single display unit.

4.2 Single Display Unit

Names and major functions

Location	Name	Major function								
(1)	Judgment monitor	Displays judgment results when used with meter relay.								
(2)	Main monitor	Displays a measured value as well as menu names and values at the time of parameter setting.								
(3)	Function monitor	RE Illu	Illuminates when the unit is set to the remote mode via communication function.							
		PH Illu	Illuminates when peak hold, valley hold, or peak-valley hold is turned on.							
		DZ Illu	Illuminates when Digital Zero is turned on.							
		TZ Illu	Illuminates when Tracking Zero is turned on.							
		ME Illu	Illuminates when Digital Zero Backup is turned on.							
		$\begin{aligned} & \text { P1 } \\ & \text { P2 } \\ & \text { P3 } \end{aligned}$	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern 7	Pattern 8
			OFF	ON	OFF	ON	OFF	ON	OFF	ON
				OFF	ON			OFF	ON	
					OFF	OFF	ON	ON		
(4)	Enter	Switches to the parameter setting mode.								
(5)	Mode	Changes modes at the time of parameter setting; switches to the memory mode at the time of normal measurements (when this button is pushed and held.)								
(6)	Shift	Selects digits at the time of parameter setting; DZ control at the time of normal measurements. (when this button is pushed and held.)								
(7)	Increment	Changes values at the time of parameter setting; pattern selection at the time of normal measurements (when this button is pushed and held) ; special operations								

Operation procedure diagram

How to set a low layer value (Condition data/scaling data/comparator data)

4.3 Numeric and Character Indications

4.4 Protection Levels

Each parameter of the A6000 has an individual protection level, and by setting the protection level of the condition data, you can set an access level. (For the protect level of each parameter, see the P.L. column of the tables in Section 4.5.)
The higher the protection level is, the less the number of settable parameters will be. If you set the protection level to the strictest LV3, you can change the protection level only, and all the other parameters may not be changed. (No comparator judgment value can be changed using the jog switches in this case.)
*The protection level set at the time of shipment is LV1. (Settings of display colors, scaling and judgment-related values only are available.)

4.5 List of the Parameters

The parameters for the process signal measurement unit can be roughly divided into three types: condition data which deal with basic functions including sampling time; scaling data which control measurement including input range; and comparator data (for meter relay only) which deal with comparator output.

4.5.1 Condition Data

Menu indication	Parameter name	Initial value	P.L.	Setting range or alternatives	Major setting purpose and remarks
AVG	Average times	50	0	$\begin{aligned} & 1 / 2 / 4 / 8 / 10 / 20 / 50 / 100 / 200 / \\ & 400 / 800 / 1000 / 2000 / 5000 \end{aligned}$	Selects Conversion rate (average times of internal sampling; sampling time: approx. 1 millisecond) *For the AC measurement unit, the max is 400 times on average (approx. 2.5 times/second). (Initial Value 400)
MAV	Average times of movements	1	0	1/2/4/8/16/32	Selects the average times of movements. Filtering effects: Small<1 (OFF)-2-4-8-16-32>Big
S.WD	Step wide	1	0	1/2/5/10	Selects the range of display changes to maintain image display consistency. (If this parameter is set to 5 , the lowest digit will display either 0 or 5 only).
CLR	Display color	RED	1	RED/GREEN	Selects display colors.*Only when without meter relay.
CLR.T	Display color type	AUTO	1	AUTO/MANU	Selects automatic (red in the HI or LO mode or green in the GO mode) or manual setting for display color type. *Only when with meter relay.
HI.CL	HI display color	RED	1	RED/GREEN	Selects red or green as display color at the time of HI judgment.*Only when CLR.T is MANU.
GO.CL	GO display color	GREN	1	RED/GREEN	Selects red or green as display color at the time of GO judgment.*Only when CLR.T is MANU.
LO.CL	LO display color	RED	1	RED/GREEN	Selects red or green as display color at the time of LO judgment.*Only when CLR.T is MANU.
BLNK	Display blank level	OFF	0	OFF/LV1/LV2/LV3/ON	Selects the display brightness. <bright OFF-LV1-LV2-LV3-ON >turned off
J.SW	Jog SW	ON	0	ON/OFF	Selects whether the jog SW is used or not.*With the multi display unit only.
PVH	PH Selection	PH	0	PH/VH/PVH	Selects a type that operates when the PH function is turned on (peak hold/valley hold/peak-valley hold).
DZ.BU	DZ backup	OFF	0	OFF/ON	Selects whether the digital zero value is backed up or not at the time when the unit is turned off.
P S	P.SEL	1	0	1/2/4/8	Selects the number of patterns available for the pattern selection function.
LINE	Linearize	OFF	0	OFF/2/4/8/16	Selects whether the linearize function is enabled/disabled and sets the number of correction points.
TR.T	TZ time	000	0	000 to 999	Selects whether the tracking zero function is enabled/disabled and sets the correction time (setup value/conversion rate).
TR.W	TZ correction range	01	0	01 to 99	Sets the correction range of the tracking zero function.*Only when TR.T is set to a value other than 000.
P.ON	Power on delay time	0	0	0 to 9	Sets the time between the startup and actual start of measurements (setup value $\times 1$ second).
PRO	Protection level	LV. 1	3	Lv.0/LV.1/LV.2/LV. 3	Selects the protection level to prevent operation mistakes. High< LV3-LV2-LV1-LV0 >Low
U-NO.	Unit number indication	OFF	0	OFF/ON	Selects whether the code of a unit mounted at the time of startup is displayed or not.
S/H.T	Start/hold type	A	0	A/B	Selects an operation type of start/hold (A: free run; B: one shot).*Only with the external control.
S/H.D	S/H delay time	0	0	0 to 9999	Sets the delay time at the time of startup (setup value $\times 1 \mathrm{~ms}$).*Only with the external control.
PVH.T	PH type	A	0	A/B	Selects an operation type of peak hold (A: real-time display; B: results display).*Only with the external control.
DZ.C	DZ control	SW	0	SW/TERM	Selects a control method of Digital Zero (SW: front key; TERM: external control terminal).*Only with the external control.
PS.C	P.SEL control	SW	0	SW/TERM	Selects a control method of Pattern Selection (SW: front key; TERM: external control terminal).*Only with the external control.
BCD.L	BCD logic	N.LOG	0	N.LOG/P.LOG	Selects the BCD output logic (N: negative logic; P: positive logic).*Only when the BCD output is available.
BAUD	Baud rate	9600	1	2400/4800/9600/19200/38400	Sets a baud rate for communication.*Only when the communication function is available.
DATA	Data length	7	1	7/8	Selects the data length for communication.*Only when the communication function is available.
P.BIT	Parity bit	E	1	E/O/N	Selects the parity bit for communication.*Only when the communication function is available.
STP.B	Stop bit	2	1	1/2	Selects the stop bit for communication.*Only when the communication function is available.
T-	Delimiter	CR.LF	1	CR.LF/CR	Selects a delimiter for communication.*Only when the communication function is available.
ADR	Equipment ID	01	1	01 to 99	Selects the equipment ID for the RS-485 function.*Only when the RS-485 function is available.

4.5.2 Scaling Data

Menu indication	Parameter name	Initial value	P.L.	Setting range or alternatives	Major setting purpose and remarks
RANG	Input range	24	1	21/22/23/24	Selects an input range.*Note that input terminals vary depending on the actual input range.
FSC	Full scale indication	9999	2	-9999 to +9999	Sets the relationship between the input signal and its indication. *In the case of AC input, please use it by " + " setting by all means. It is not displayed normally when I use it by "-" setting.
FIN	Full scale input	9999	2	-9999 to +9999	
OFS	Offset indication	0	2	-9999 to +9999	
OIN	Offset input	0	2	-9999 to +9999	
DLHI	Digital limiter HI	9999	0	-9999 to +9999	Sets the upper limit of the displayable range. (Any value equal to or exceeding the digital limiter HI setting will not be updated and kept at the setup value.
DLLO	Digital limiter LO	-9999	0	-9999 to +9999	Sets the lower limit of the displayable range. (Any value equal to or below the digital limiter LO setting will not be updated and kept at the setup value.
A.OUT	Analog output type	0-1	1	0-1/0-10/1-5/4-20	Selects an analog output range.*Only when the analog output is available.
AOHI	Analog output HI	9999	1	-9999 to +9999	
AOLO	Analog output LO	0	1	-9999 to +9999	Sets the relationship between indications and analog outputs.*Only when the analog output is available.
DP	Decimal point	None	2	Each digit can be set independently.	Sets the position of the decimal point.

4.5.3 Comparator Data (for meter relay only)

$\begin{array}{c\|} \hline \text { Menu } \\ \text { indication } \end{array}$	Parameter name	Initial value	P.L.	Setting range or altematives	Major setting purpose and remarks
COM. ${ }^{\text {T }}$	Comparator output type	OU	1	OU/ERR	Select either [above or below] or error comparator types.
HI-S	H1 judgment value	1000	2	-9999 to +9999	Sets a Hl judgment value.*Only when COM.T is O/U.
LOS	LOjudgment value	500	2	-9999 to +9999	Sets a LO judgment value.*Only when COM. ${ }^{\text {a is OUU. }}$
N.VAL	Nominal value	5000	2	-9999 to +9999	Sets a nominal value.*Only when COM. is ERR
ERR1	Error 1	5.00	2	0.00 to 99.99	Sets an error.*Only when COM. is ERR.
$\mathrm{HI}-\mathrm{H}$	HI hysteresis	0	1	0 to +999	Sets a Hll hysteresis value *Only when COM.T is O/U.
LO-H	LO hysteresis	0	1	0 to +999	Sets a LO hysteresis value *Only when COM.T is O/U.
ER1.H	Error 1 hysteresis	1	1	0 to +999	Sets an error hysteresis *Only when COM.T is ERR
H-L	Hil logic	N.O	0	N.OIN.C	Sets a HI output logic (N.O.=normally open or N.C.=normally dosed)*Otput when the power is OFF is always open (OFF).
GO-L	GOlogic	N.O	0	N.OIN.C	Sets a GO output logic (N.O.=normally open or N.C.=normally dosed)*Output when the power is OFF is always open (OFF).
LOL	LOlogic	N.O	0	N.ON.C	Sets a LOoutput logic (N.O.=normally open or N.C. $=$ normally dosed)* ${ }^{\text {atput when the power is OFF is always open (OFF). }}$

5 Setting Examples

5.1 Scaling Data Setting Examples

Example 1
When the voltage range of the input signal is 0 to 1 mA , corresponding indication values should be 0 to 5000

Example 2
When the input signal is between 0 to $500 \mu \mathrm{~A}$, indications are changed from 0.0 to 500.0 thereby limiting indication range to between 0 and 5000 Indication value

Example 3
When the voltage range of the input signal is 4 to 20 mA , corresponding indication values should be 0 to 2000 .

Input range (RANG) : 24
Full scale indication (FSC) : 2000
scale input value (FIN) : 2000
Offset ion (OFS): 0
Decimal point (DP) : None (Set to illuminate all the digits.)
As the indication range (FSC-OFS=2000) is large than the actual resolution (FINOIN=1600), the indication will change in steps of more than one.

Example 4
When the voltage range of the input signal is 4 to 20 mA , corresponding indication values should be 2000 to 0 .

5.2 Comparator Data Setting Examples (for meterrelay only)

Example 1

※The hysteresis is effective either in the range lower than the HI judgment value or that higher than the LO judgment value

Example 2

※Error is to be set as a percentage of the nominal value
※The hysteresis is to be set as $x x$ digits of the indication value.
※The hysteresis is effective either in the range lower than the upper side error or Whe hysteresis is effective either in the
that higher than the lower side error.

6 Specifications and Measurements

6．1 Input Specifications

DC current measurements（Small electric current）

Range	Measurement range	Indication	Error（ $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; 35$ to 85% ）	Input impedance	Maximum permissible input
21	$\pm 99.99 \mu \mathrm{~A}$	Offset：± 9999 Full scale：± 9999	$\pm(0.1 \%$ of rdg +2 digit $)$	Approx．1k Ω	$\pm 10 \mathrm{~mA}$
22	$\pm 999.9 \mu \mathrm{~A}$			Approx． 100Ω	
23	$\pm 9.999 \mathrm{~mA}$			Approx． 10Ω	$\pm 50 \mathrm{~mA}$
24	$\pm 99.99 \mathrm{~mA}$			Approx． 1Ω	$\pm 500 \mathrm{~mA}$

Sampling rate ：Maximum approx．1，000 times／second
＊The error is applied when the sampling rate is 20 times／second or less．
－AC current measurements（Small electric current）

Range	Measurement range	Indication	Error（ $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; 35$ to 85% ）	Input impedance	Maximum permissible input
21	$99.99 \mu \mathrm{~A}$	$\begin{aligned} & \text { Offset: } \pm 9999 \\ & \text { Full scale: } \pm 9999 \end{aligned}$	\pm（0．5\％of rdg＋20digit）	Approx．1k Ω	10mA
22	$999.9 \mu \mathrm{~A}$			Approx． 100Ω	
23	9.999 mA			Approx． 10Ω	50 mA
24	99.99 mA			Approx． 1Ω	500 mA

Sampling rate	$:$	Maximum approx． 2.5 times／second
Measurement method	$:$	True rms value calculation
Frequency range	$:$	50 Hz or $60 \mathrm{~Hz}(21,22$ range $), 40 \mathrm{~Hz}$ to $1 \mathrm{kHz}(23,24$ range $)$
Response speed	$:$	Approx． 1 second $(10 \%$ to $90 \%)$

6．2 General Specifications

Display

Multi display

Main display：Red／green 7－segment display
（character height：approx
Sub display：Red 7－segme 20 misp
Sub display：Red 7－segment display
（character height：approx． 6 mm ）
Single display

Red／green 7 －segment display（character height：approx． 20 mm ）
Display range －9999 to 9999

Operational temperature
Storage temperature
Power supply

Power consumption

External dimension
Weight
Withstand voltage
（tion resistance

0 to $50^{\circ} \mathrm{C} 35$ to $85 \% \mathrm{RH}$
-10 to $70{ }^{\circ} \mathrm{C} ; 60 \% \mathrm{RH}$ or less
AC PS
AC 100 to $240 \mathrm{~V} \pm 10 \%$
DC PS
DC 12 to $48 \mathrm{~V} \pm 10 \%$
AC PS
Maximum load：Approx． 8 VA at 100 VAC
DC PS
Maximum load：Approx． 7 W at 24 VDC
$48 \mathrm{~mm}(\mathrm{H}) \times 96 \mathrm{~mm}(\mathrm{~W}) \times 97.5 \mathrm{~mm}$（with no DX option unit mounted）
Approx． 450 g
AC PS
PS－input，output： $1,500 \mathrm{VAC}, 1$ minute（AC PS） Input－output： 500 VDC， 1 minute
Output－output： 500 VDC， 1 minute
Case－PS，input，output： 1,500 VAC， 1 minute DC PS

PS－input，output： 500 VDC， 1 minute（DC PS）
Input－output： 500 VDC， 1 minute
Output－output： 500 VDC， 1 minute
Case－PS，input，output： 1,500 VAC， 1 minute
AC PS
Among the above terminals： 500 VDC $100 \mathrm{M} \Omega$ or more DC PS

Among the above terminals： 500 VDC $100 \mathrm{M} \quad \Omega$ or more

6．3 Output for Comparison Specifications（for meter relay only）

－Common specifications

Conditions for comparison	Judgment result
Indicated value \square Upper limit judgment value	HI
Lower limit judgment value \square Indicated value \square Upper limit judgment value	GO
Lower limit judgment value \square Indicated value	LO

[^0]
6．4 External Dimensions

7 Warranty and Service

7．1 Warranty

The manufacturer warrants to the original retail customer its A6000 series universal digital panel meter to be free of defects in material and workmanship for use under normal care and will repair or replace any meter at no charge to the customer during the one（1）year warranty period of the meter．

7．2 After Sales Service

Under strict quality control measures，this product was manufactured，tested， inspected and shipped．Should a defect in manufacture or workmanship be identified，please return the product to our distributor or directly to us．It would be highly appreciated if you could give a detailed account of the fault and enclose it with the product．

шョヒョாヨดセ
WATANABE ELECTRIC INDUSTRY CO．，LTD．
6－16－19，Jingumae，Shibuya－ku，Tokyo 150－0001，Japan Phone：（81）3－3400－6141
Homepage http：／／www．watanabe－electric．co．jp／en／

Instruction Manual for A6000 Series Universal Digital Panel Meters

External Control Unit

1 Before Using the Unit

This instruction manual is for the external control unit of the A6000 series. Read this manual along with the main unit's instruction manual before using the unit.

2 Terminals and Connections

3 Timing Charts

Starthold type A

*1 Specified sampling
The sampling speed is determined by the AVG parameter setting of condition data as shown in the table below:

AVG setting	Sampling speed	Sampling cycle	AVG setting	Sampling speed	Sampling cycle
1	1041.65 times $/$ sec	Approx. $960 \mu \mathrm{~s}$	100	10.4165 times $/$ sec	Approx. 96 ms
2	520.825 times $/ \mathrm{sec}$	Approx. 1.92 ms	200	5.20825 times $/$ sec	Approx. 192 ms
4	260.4125 times $/ \mathrm{sec}$	Approx. 3.84 ms	400	2.604125 times $/ \mathrm{sec}$	Approx. 384 ms
8	130.20625 times $/ \mathrm{sec}$	Approx. 7.68 ms	800	1.3020625 times $/ \mathrm{sec}$	Approx. 768 ms
10	104.165 times $/ \mathrm{sec}$	Approx. 9.6 ms	1000	1.04165 times $/ \mathrm{sec}$	Approx. 960 ms
20	52.0825 times $/ \mathrm{sec}$	Approx. 19.2 ms	2000	0.520825 times $/ \mathrm{sec}$	Approx. 1.92 sec
50	20.833 times $/ \mathrm{sec}$	Approx. 48 ms	5000	0.20833 times $/ \mathrm{sec}$	Approx. 4.8 sec

※Using a temperature measuring unit, the sampling speed is half of the value in the table above when the RTD is selected and quarter of it when the TC is selected.
※It is different, and a frequency measurement unit is indication update time with a range.
Please refer to input specifications (Clause 6.1) of an instruction manual for frequency measurement.
*3 External start signal
The width of the external start signal must be from between 500μ s to a specified sampling cycle. A time delay can be set for the external start using the S / H delay time parameter of the condition data
*4 Time delay for comparator output
Relay output: 10 ms max., photocoupler output: $200 \mu \mathrm{~s}$ max.

4 Specifications and External Dimensions

- External control terminal

Internal circuit: Pulled up to approximately +5 V (through a $10 \mathrm{k} \Omega$ resistor).
Control signal's HI level: 4.2 to 5 V relative to the COM terminal
Control signal's LO level: 0 to 0.4 V relative to the COM terminal

Caution

The external control circuit's COM terminals and the input circuit's LO or AG terminal are set at the same DC potential.

5 Warranty and Service

5．1 Warranty

The manufacturer grants a warranty to the original retail customer stating that its A6000 series universal digital panel meter is free of defects in material and workmanship for use under normal care，and will repair or replace the meter at no charge to the customer during the one （1）year warranty period．

5．2 After Sales Service

This product was manufactured，tested，inspected and shipped under strict quality control measures．Should a defect in manufacture or workmanship be identified，please return the product to our distributor or directly to us．It would be highly appreciated if you could give a detailed account of the problem and enclose it with the product．

шョヒョாヨดセ WATANABE ELECTRIC INDUSTRY CO．，LTD．

6－16－19，Jingumae，Shibuya－ku，Tokyo 150－0001，Japan Phone：（81）3－3400－6141
Homepage http：／／www．watanabe－electric．co．jp／en／

Instruction Manual for A6000 Series Universal Digital Panel Meters

BCD Output and External Control Unit

1 Before Using the Unit

This instruction manual is for the BCD output and external control unit of the A6000 series. Read this manual along with the main unit's instruction manual before using the unit.

Caution

2 Terminals and Connections

3 Timing Charts

Starthold type A

Starthold type B

※Using a temperature measuring unit, the sampling speed is half of the value in the table above when the RTD is selected and quarter of it when the TC is selected.
※lt is different, and a frequency measurement unit is indication update time with a range.
Please refer to input specifications (Clause 6.1) of an instruction manual for frequency measurement.
*2 P.C output signal width
The output signal width is determined by the specified sampling setting as shown in the table below:

AVG setting	P.C output width	AVG setting	P.C output width
1	Approx. $220 \mu \mathrm{~s}$	100	
2	Approx. 0.25 ms	200	
4	Approx. 1.15 ms	400	
8	Approx. 2.3 ms	800	Approx. 30 ms
10	Approx. 2.9 ms	1000	
20	Approx. 5.8 ms	2000	
50	Approx. 14.4 ms	5000	

※The output width is always 30 ms for the frequency measurement unit.
*3 External start signal
The width of the external start signal must be from between 500μ s to a specified sampling cycle. A time delay can be set for the external start using the S/H delay time parameter of the condition data.
4 Time delay for comparator output
Relay output: 10 ms max., photocoupler output: $200 \mu \mathrm{~s}$ max.

4 Specifications and External Dimensions

-BCD output

Output type : open collector or TTL-compatible
Polarity : The applicable transistor (open collector) or polarity bit (TTL) turns on when negative values are indicated.
Overflow : The applicable transistor (open collector) or bit (TTL) turns on when the overflow state is indicated.

Output logic : Can be switched alternatively (the logic for the P.C bit cannot be changed).
Output rating : 30 V DC and 10 mA (open collector), or fan-out 2 (TTL)

1 ! Caution

The BCD output logic can be switched using the BCD logic parameter (BCD.L) of the condition data, which is positive when BCD.L is set to P.LOG and negative when BCD.L is set to N.LOG for an output type of Open collector. This logic is reversed if the output type is "TTL."

- External control terminal

Internal circuit: Pulled up to approximately +5 V (through a $10 \mathrm{k} \Omega$ resistor).
Control signal's HI level: 4.2 to 5 V relative to the COM terminal
Control signal's LO level: 0 to 0.4 V relative to the COM terminal

（1）Caution

1）The BCD output circuit and the external control circuit are electrically isolated from each other（withstand voltage： 500 V DC for one minute）．
2）The external control circuit＇s COM terminals and the input circuit＇s LO or AG terminal are set at the same DC potential．

5 Warranty and Service

5．1 Warranty

The manufacturer grants a warranty to the original retail customer stating that its A6000 series universal digital panel meter is free of defects in material and workmanship for use under normal care，and will repair or replace the meter at no charge to the customer during the one （1）year warranty period．

5．2 After Sales Service

This product was manufactured，tested，inspected and shipped under strict quality control measures．Should a defect in manufacture or workmanship be identified，please return the product to our distributor or directly to us．It would be highly appreciated if you could give a detailed account of the problem and enclose it with the product．

шョもョாコロー WATANABE ELECTRIC INDUSTRY CO．，LTD．

[^1]Homepage http：／／www．watanabe－electric．co．jp／en／

Instruction Manual for A6000 Series Universal Digital Panel Meters
 Analog Output and External Control Unit

1 Before Using the Unit

This instruction manual is for the analog output and external control unit of the A6000 series. Read this manual along with the main unit's instruction manual before using the unit.

2 Terminals and Connections

3 Timing Charts

Starthold type A

Start/hold type B

* Specified sampling

The sampling speed is determined by the AVG parameter setting of condition data as shown in the table below

AVG setting	Sampling speed	Sampling cycle	AVG setting	Sampling speed	Sampling cycle
1	1041.65 times $/ \mathrm{sec}$	Approx. $960 \mu \mathrm{~s}$	100	10.4165 times $/ \mathrm{sec}$	Approx. 96 ms
2	520.825 times $/ \mathrm{sec}$	Approx. 1.92 ms	200	5.20825 times $/ \mathrm{sec}$	Approx. 192 ms
4	260.4125 times $/ \mathrm{sec}$	Approx. 3.84 ms	400	2.604125 times $/ \mathrm{sec}$	Approx. 384 ms
8	130.20625 times $/ \mathrm{sec}$	Approx. 7.68 ms	800	1.3020625 times $/ \mathrm{sec}$	Approx. 768 ms
10	104.165 times $/ \mathrm{sec}$	Approx. 9.6 ms	1000	1.04165 times $/ \mathrm{sec}$	Approx. 960 ms
20	52.0825 times $/ \mathrm{sec}$	Approx. 19.2 ms	2000	0.520825 times $/ \mathrm{sec}$	Approx. 1.92 sec
50	20.833 times $/ \mathrm{sec}$	Approx. 48 ms	5000	0.20833 times $/ \mathrm{sec}$	Approx. 4.8 sec

※Using a temperature measuring unit, the sampling speed is half of the value in the table above when the RTD is selected and quarter of it when the TC is selected.
※It is different, and a frequency measurement unit is indication update time with a range.
Please refer to input specifications (Clause 6.1) of an instruction manual for frequency measurement *3 External start signal
The width of the external start signal must be from between $500 \mu s$ to a specified sampling cycle. A time
delay can be set for the external start using the S/H delay time parameter of the condition data.
*4 Time delay for alarm output
Relay output: 10 ms max., photocoupler output: $200 \mu \mathrm{~s}$ max.

4 Specifications and External Dimensions

Output type	Load resistance	Accuracy	Response speed	Ripple
0 to 1 V	$10 \mathrm{k} \Omega$ or more	$\pm(0.5 \%$ of FS)	Approx. 0.5 second	50 mV p -p
0 to 10V				
1 to 5V				
4 to 20 mA	550Ω or less			25 mV p-p
Conversion system : PWM conversion				
Resolution	Equivalent to 14 bits			
Scaling	Digital scaling			
- External control terminal				
Internal circuit Control signal's HI level Control signal's LO	4.2 to 5 V relative to the COM terminal			
	vel : 0 to 0.4 V relative to the COM terminal			

5 Warranty and Service

5．1 Warranty

The manufacturer grants a warranty to the original retail customer stating that its A6000 series universal digital panel meter is free of defects in material and workmanship for use under normal care，and will repair or replace the meter at no charge to the customer during the one （1）year warranty period．

5．2 After Sales Service

This product was manufactured，tested，inspected and shipped under strict quality control measures．Should a defect in manufacture or workmanship be identified，please return the product to our distributor or directly to us．It would be highly appreciated if you could give a detailed account of the problem and enclose it with the product．

шョヒョாヨดセ

WATANABE ELECTRIC INDUSTRY CO．，LTD．

6－16－19，Jingumae，Shibuya－ku，Tokyo 150－0001，Japan Phone：（81）3－3400－6141
Homepage http：／／www．watanabe－electric．co．jp／en／

Instruction Manual for A6000 Series Universal Digital Panel Meter
 ~RS-232C/RS-485 and Analog Output Units~

1 Before Using the Unit

This Operation Manual corresponds to the communication function + analog output optional units of the A6000 Series Universal Digital Panel Meters. When using the instrument, please read through this manual in combination with the Operation Manual of the main unit.

2 Terminals and Connections

1 CAUTION

The A6000 series does not support replacement of each unit by the customer

3 Examples of Connections and Use

3.1 Connecting the RS-232C Interface

3.2 Connecting the RS-485 Interface

*f cascade wiring is carried out with a RS-485 connection, use a commercially available Y -type split connector or the like. *To turn ON an RS-485 I/O unit's terminator (200Ω), short-circuit the two TERM terminals.

3.3 Control Codes Used in RS-485 Interface

Code	Hexadecimal	Name
STX	02 H	Start of Text
ETX	03 H	End of Text
EOT	04 H	End of Transmission
ENQ	05 H	Enquiry
ACK	06 H	Acknowledge

3.4 Establishing RS-485 Communication

3.5 RS-485 Communication formats

As a means of error detection, a block check character (BCC) checksum is added to the RS-485 communication function of the A6000 . See the following illustrations for details on the transmission and reception formats.
(RS-232C communication format is same as the command table which is mentioned in the next section.)

```
Example of BCC Checksum for Transmission
```



```
Hexadecimal 
- BCCH \(=\) Higher-order 4 bits among the lower-order 8 bits of the sum of the hexadecimal values numbered from [1] to [4] \(44 \mathrm{H}+53 \mathrm{H}+50 \mathrm{H}+03 \mathrm{H}=\mathrm{EAH}\)
BCCL = Lower-order 4 bits among the lower-order 8 bits of ne sum of the hexadecim al values numbered from [1] to [4] \(44 \mathrm{H}+53 \mathrm{H}+50 \mathrm{H}+03 \mathrm{H}=\mathrm{EAH}\)
```

Example of BCC Checksum for Reception
Character

$B C C L=$ Lower-order 4 bits among the lower-order 8 bits of the sum $20 \mathrm{H}+20 \mathrm{H}+20 \mathrm{H}+35 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+20 \mathrm{H}+48 \mathrm{H}+49 \mathrm{H}+03 \mathrm{H}=1 \mathrm{D} 9 \mathrm{H}$
$\mathrm{BCCH}=$ Higher-order 4 bits among the lower-order 8 bits of the $20 \mathrm{H}+20 \mathrm{H}+20 \mathrm{H}+35 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+30 \mathrm{H}+20 \mathrm{H}+48 \mathrm{H}+49 \mathrm{H}+03 \mathrm{H}=1 \mathrm{D} 9 \mathrm{H}$

4 Communication Commands

* The same setting methods as those above are also used for setting of other data (such as linearize data).

5 Specifications and Dimensions

6 Warranty and After－sales Services

6．1 Warranty

The warranty period of this product is one year from the date of delivery．If a problem occurs during this warranty period and its cause is determined to be attributable to us，and will repair the product without charge．

6．2 After－sales Services

This product has been manufactured，tested，and inspected under strict quality control before shipment from the factory．If the product breaks down，contact your sales representative or our local office（or send it ）．In this case，write down the problem in detail and report it to your service representative（or enclose it with the product）．

шョヒョாョbe
 WATANABE ELECTRIC INDUSTRY CO．，LTD．

6－16－19，Jingumae，Shibuya－ku，Tokyo 150－0001，Japan Phone：（81）3－3400－6141
Homepage http：／／www．watanabe－electric．co．jp／en／

[^0]: Judgment value setup range
 Hysteresis
 Operating speed
 Relay contact output
 Contact quantity
 Contact rating
 －9999 to＋9999
 Can be set in the range of 1 to 999 digits for each judgment value Depends on the sampling rate

[^1]: 6－16－19，Jingumae，Shibuya－ku，Tokyo 150－0001，Japan
 Phone：（81）3－3400－6141

