Tel.: 07720-3903-0
Fax: 07720-21564

Display 571

Universal Display Units with Impulse Inputs

0.571.012.E90: Display with analogue output
0.571.011.EOO: Display with two presets and outputs
0.571.012.E05: Display with serial interface

Operation modes:

- Tachometer, frequency meter
- Counter for positions and events
- Baking time, processing time (reciprocal speed)
- Timer, stopwatch
- Speed display from delay between a Start and a Stop input

Operating Instructions

Safety Instructions

- This manual is an essential part of the unit and contains important hints about function, correct handling and commissioning. Non-observance can result in damage to the unit or the machine or even in injury to persons using the equipment!
- The unit must only be installed, connected and activated by a qualified electrician
- It is a must to observe all general and also all country-specific and applicationspecific safety standards
- When this unit is used with applications where failure or maloperation could cause damage to a machine or hazard to the operating staff, it is indispensable to meet effective precautions in order to avoid such consequences
- Regarding installation, wiring, environmental conditions, screening of cables and earthing, you must follow the general standards of industrial automation industry
- - Errors and omissions excepted -

Version:	Description
$01 / \mathrm{wb} / \mathrm{sb} /$ April 02	
$02 / \mathrm{wb} / \mathrm{sb} /$ July 03	Supplements for 571 serial interface
$03 / \mathrm{wb} / \mathrm{sb} /$ Jan. 04	Range extensions and supplements for serial code
$04 / \mathrm{wb} / \mathrm{sb} /$ Jan. 07	Version with 3 keys, A5 brochure

Table of Contents

1. Electrical Connections 4
1.1. Power supply 5
1.2. Aux. voltage output 5
1.3. Inputs A, B and Reset 5
1.4. Adjustable analogue output (0.571.012.E90 only) 6
1.5. Optocoupler (transistor) outputs (0.571.011.EOO only) 6
1.6. Serial RS232 / RS485 interface (0.571.012.E05 only) 7
2. How to Operate the Keys 8
3. Basic Settings 9
4. Operational registers 10
4.1. RPM, operation as tachometer or frequency counter 10
4.2. Time, display of baking or processing time (reciprocal speed) 11
4.3. Timer, stopwatch 12
4.4. Count, Counter mode 13
4.5. Speed from differential time between a Start and a Stop input 14
5. Additional Settings for Units with Analogue Output (0.571.012.E90) 15
6. Additional settings for Units with Presets (0.571.011.EOO) 16
7. Additional settings for Units with serial interface (0.571.012.E05) 18
8. Set all register to "Default" 21
9. Dimensions 21
10. Technical Data 22
11. Parameter List 23

1. Electrical Connections

0.571.012.E90: Display with analogue output

0.571.011.E00: Display with two presets and outputs

0.571.012.E05: Display with serial interface

1.1. Power supply

The unit accepts DC supply from 17 V to 30 V when using terminals 1 and 2 , and the consumption depends on the level of the supply voltage (typical 80 mA at 30 V or 150 mA at 17 V , plus current taken from aux. output).
For AC supply, terminals 0 VAC, 115 VAC or 230 VAC can be used. The total AC power consumption is 7.5 VA .

The diagrams show a dotted line for grounding to PE. This connection is not really necessary, neither for safety nor for EMC. However, for some applications, it can be useful to ground the common potential of all signal lines.

When using this earthing option, please observe:

- All terminals and potentials marked "GND" will be earthed.
- Please avoid multiple earthing, e.g. when you use a DC power supply where the Minus is already connected to earth etc.

1.2. Aux. voltage output

Terminal 7 provides an auxiliary output of 24VDC/150mA max. for supply of sensors and encoders.

1.3. Inputs A, B and Reset

In the basic setup menu, these inputs can be configured to PNP (signal must switch to +) or to NPN (signal must switch to -). This configuration is valid for all three inputs at a time. The factory setting is always PNP.

Please note:

- Independent of your setting, all functions of the unit are "active HIGH" and the unit triggers to positive transitions (rising edge). Because, with NPN setting, open or unused inputs are HIGH, you must tie the Reset line to GND for operation. Otherwise, your unit will be in a continuous RESET state and cannot work.
- Where your use 2-wire NAMUR type sensors, please select NPN, connect the negative wire of the sensor to GND and the positive wire to the corresponding input.

Typical input circuit:

Counting inputs A and B are designed for input frequencies up to 100 KHz with all counter modes, and up to 25 kHz with all other operating modes.
The minimum pulse duration on the Reset input must be $500 \mu \mathrm{sec}$.
All inputs are designed to receive impulses from an electronic impulse source. Where exceptionally you need to use mechanical contacts, please connect an external capacitor between GND (-) and the corresponding input (+). With a capacity of 10μ F, the maximum input frequency will reduce to 20 Hz and miscounting due to contact bouncing will be eliminated.

1.4. Adjustable analogue output (0.571.012.E90 only)

A voltage output is available, operating in a range of $0 \ldots+10 \mathrm{~V}$ or $-10 \mathrm{~V} \ldots .+10 \mathrm{~V}$ according to setting. At the same time, a current output $0 / 4-20 \mathrm{~mA}$ is available. Both outputs refer to the GND potential and the polarity changes with the sign in the display. The outputs provide a 14 bits resolution and the response time to changes of the measuring value is approx. 7 msec . The maximum current of the voltage output is 2 mA , and the load on the current output can vary between 0 and max. 2700 hms .

1.5. Optocoupler (transistor) outputs (0.571.011.EOO only)

The outputs provide programmable switching characteristics and are potential-free. Please connect terminal 8 (COM+) to the positive potential of the voltage you like to switch (range 5 V 35 V). You must not exceed the maximum output current of 150 mA . Where you switch inductive loads, please provide filtering of the coil by means of an external diode.

1.6. Serial RS232 / RS485 interface (0.571.012.E05 only)

Ex factory the unit is set to RS232 communication. This setting can be changed to RS485 (2-wire) by means of an internal DIL switch. To access the DIL switch, you must remove the screw terminal connectors and the backplane. Then pull the print to the rear to remove the PCB from the housing.

Warning!

- Never set DIL switch positions 1 and 2 or DIL switch positions 3 and 4 to ON at the same time!
- After setting the switch, shift the print carefully back to the housing, in order not to damage the front pins for connection to the front keypad plate.

2. How to Operate the Keys

There are two keys on the front of the unit. The left key \square provides the "ENTER" function and the right key \quad (SET) is used to scroll.

To start the menu, keep the ENTER key down for at least 3 seconds.

Use the SET key to scroll from one menu text to the next. Select the menu text by ENTER - Scroll through the settings and confirm your choice by ENTER again.

Where you get to numeric entries, the low order digit will blink. Keep the SET key down to increment this digit to the figure desired. When you release the SET key, the next digit will blink for editing etc. After setting the high order digit, the low order digit will blink again and you are free to make corrections

With parameters using a sign, the most significant decade will scroll only between " 0 " (positive value) and "-" (negative value).

As soon as you have set all digits to the desired value, press ENTER \sim to store the setting. This will also change over to the next parameter text.

To exit the menu, keep again "ENTER" down for at least 3 seconds.

When you do not touch any key for about 10 seconds, the "time-out" routine will switch back to the previous menu level and finally to normal display operation. All changes that have not been confirmed by ENTER \rightarrow at this time will not be saved.

All counting functions remain disabled while you are using the menu!

3. Basic Settings

The subsequent settings are of unique nature and must only be made upon the very first setup. Sections 3. and 4. describe all parameters of the "display only" and supplementary settings for optional outputs and interfaces are explained later.
The basic setup selects the desired operation mode of the unit, the input characteristics PNP/NPN and the desired brightness of the LED display.
 To access the basic setup, press ENTER and SET at a time for at least 3 seconds.

Menu	Selection	Text	Description
LSPE		Type	Operation Mode
	-Pn	RPM	tachometer, frequency meter (4.1)
	L, пาE	Time	baking/processing time (4.2)
	Es maEr	Timer	stopwatch
	Count	Count	position or event counter (4.4)
	5PEEd	Speed	speed from differential time
CHAr		Char	Characteristics of input
	$n \square_{0}$	NPN	switch to "-"
	PnP	PNP	switch to " + "
br aGht		Bright	brightness of display 20\%, 40\%, 60\%, 80\%,100\%
CodE		Code	Code locking of the keypad
	no	No	keys enabled all the time
	ALL	ALL	keys disabled for all functions
	P_FrEE	P_FrEE	keys disabled, except for access to Preset values Pres 1 and Pres 2 (0.571.011.EOO only)

4. Operational registers

After the basic setup, you can access the operational parameters by pressing ENTER \leqslant for at least 3 seconds. You will only find the parameters that are relevant for your mode of operation. To exit the menu, keep again ENTER down for at least 3 seconds, or just wait for the timeout.

When the code locking of the keypad has been switched on, any key access first results in display of

To access the settings, within 10 seconds you must now press the key sequence
otherwise the unit automatically will return to the normal display mode.

4.1. RPM, operation as tachometer or frequency counter

(Input A = frequency input, Input B not in use)

Menu	Selection	Text	Description
FrEqu		Frequency	Set a typical operating frequency for your application. Range 1 Hz to 25000 Hz
d.5Pl		Display	Set the value you would like to see on your display with above frequency at the input.
$d P_{0}$ int		Decimal point	Select the desired position like shown in the display
Lef it		Wait	Define a "waiting time", this is the time in seconds that the unit will wait from one input pulse to the next, before it sets the display to zero. When you enter " 0 ", the unit will wait forever and show the last result until it receives the next input.
F ilter		Filter	Selectable average filter to suppress unstable display with unsteady input frequencies.
	DFF	OFF	No filtering
	16		$2,4,8,16=$ number of floating average cycles.

Units of version 0.571.012.E90 allow displaying speed also with a sign for the direction of rotation. See section 5.

4.2. Time, display of baking or processing time (reciprocal speed)

(Input A = frequency input, Input B not in use)

Menu	Selection	Text	Description
d.5For		DisplayFormat:	Select between seconds, minutes, minutes and seconds or minutes with two decimal positions. This will also automatically set your decimal point to the proper place.
	5EC		
	חר - -5E		
	ח7 \% 13		
FrEqu		Frequency	Set a typical operating frequency for your application. Range 1 Hz to 25000 Hz .
d SPL		Display	Set the value you would like to see on your display with above frequency at the input.
LuA It		Wait	Define a "waiting time", this is the time in seconds that the unit will wait from one input pulse to the next, before it sets the display to zero. When you enter " 0 ", the unit will wait forever and show the last result until it receives the next input.
Filter		Filter	Selectable average filter to suppress unstable display with unsteady input frequencies.
	DFF		No filtering
	何		2, 4, 8, $16=$ number of floating average cycles.

4.3. Timer, stopwatch

Please note that open NPN inputs are always "HIGH" and open PNP inputs are always "LOW".

Menu	Selection	Text	Description
6RSE		Base	Select the time base (resolution) for your application.
	SECOOD		Milliseconds
	SELOO		1/100 seconds
	SECD		1/10 seconds
	SEL		integer seconds
	ก7 \% \% 0		minutes with two decimals
	ח\%		minutes with one decimal
	H-5-5		minutes : seconds
5tArt	H I_Loo	Start	High_Low: Time count active while input A is HIGH
	5t_5P	Start_Stop	Rising edge on input A starts count. Rising edge on input B stops count
	H_SESP	A_StSP	Period time measurement. Repeating display of the time between two rising edges on input A
rESEE	no	Reset: no	Time count cumulates with every new start. No automatic Reset. Use the Reset input to set zero.
	4ES	YES	Every start initializes a new count starting from zero.
LRLcH	no	Latch: no	Real time display, count visible.
	4ES	YES	Display freezes final count result after every Stop. Timer counts in the background

4.4. Count, Counter mode

Menu	Selection	Text	Description
n7odE	A_bd ir	Mode: A_Bdir	A_Bdir: Input A counts and input B selects the counting direction (LOW = increment, $\mathrm{HIGH}=$ decrement)
	A $\quad 6$	AuB	Summing mode, count $=\mathrm{A}+\mathrm{B}$
	A -	A-B	Differential count A - B
	H_b.i	A_B. 1	Quadrature up/down counter A / B with single edge count (x1)
	A_b ?	A_B. 2	Quadrature up/down counter A/B with double edge count (x2)
	A.b.4	A_B. 4	Quadrature up/down counter A/B with (x4) edge count.
FRctor		Factor	Impulse scaling factor $0.0001-9.9999$. Example: setting 1.2345 results in display of 12345 after 10000 input pulses.
5EE		Set	Every Reset input will set your display to the value entered here. Range - $1999990 . . .999999$.
rESEL	no	Reset N0 Front	Select, how to set/reset the counter. no: No set/reset possible Set/reset by the front SET key
	Front		
	E_LEro	Extern FruE	Set reset by remote signal to the Reset input. Set/reset by front SET key and external input.
	Fr u E		
dPoint	000000	Dpoint	Sets your decimal point to the desired place.

The counting range of the unit is limited from -199999 to 999999. In case of underflow or overflow the unit will display

4.5. Speed from differential time between a Start and a Stop input

Input A operates as a start input and input B operates as a Stop input. The differential time between start and stop will be converted into the speed of the passing object.

Menu	Selection	Text	Description
E mat		Time	Enter a typical delay time you expect between start and stop. Range 0.001 sec to 999.999 sec .
d.5PE		Displ	Enter the speed you would like to see in the display when an object passes with above time.
$d P_{0}$ int	000030	Dpoint	Sets your decimal point to the desired place.
Lef it		Wait	How long should the last result remain in the display before it returns to zero? Set the desired waiting time. With setting " 0 " the display will freeze and wait until to the next measuring cycle.

5. Additional Settings for Units with Analogue Output (0.571.012.E90)

This version uses the following additional parameters in the basic setup:

Menu	Selection	Text	Description
H-[HR\%	$-10 _10$ 0 0.10 $0 _20$ 420	A-Char	Analogue Characteristics. Select between +/- 10V (positive and negative output) $0 . . .+10 \mathrm{~V}$ (positive output only) $0-20 \mathrm{~mA}$ 4-20mA.

Where you set the output to +/- 10 Volts, your input signals A / B must be of quadrature type with phase displacement. The polarity of the output follows the sign in the display (operation as a counter or as a speed display with detection of direction of rotation).

Menu	Selection	Text	Description
OFFSEE		Offset	Set this register to "0" when your output range should begin at zero (or 4 mA) If you desire another initial output value, set this register correspondingly. Setting 5.000 means your output will start at 5 Volts instead of zero.
GR in		Gain	Set the analogue stroke you desire: Setting 1000 means 10 Volts or 20 mA . Setting 200 reduces the stroke to 2 Volts or 4 mA . Full scale output = Offset + Gain.
	AnAbEL	Anabeg	In the operational menus you will find two additional parameters: Anabeg sets the display
	AnREnd	Anaend	value where the analogue output should begin and Anaend sets the display value for full scale output. Where you set Anabeg to -1500 and Anaend to 2100, your output will generate the start value (like defined before) at a display of -1500 and the full scale value at a display value of 2100 .

6. Additional settings for Units with Presets (0.571.011.EOO)

The basic setup menu provides the following additional parameters. Where you program impulse outputs, the impulse duration will always be 300 msec (factory adjustable only).

CHAr I CHAR Z HYSE I HYSE 2

The settings "Char 1" and "Char2" select the switching characteristics of output 1 and output 2 according to the following table.

Parameters "Hyst1" and "Hyst2" allow assigning a switching hysteresis to each of the two outputs.
Hysteresis settings are only active with the operation modes RPM (tachometer) and
Time (baking time)
The direction of operation of the hysteresis depends on the selected switching characteristics "GE" or "LE" as explained in the drawing below.

Menu	Selection	Text	Description
[HAr	- $\mathrm{J}^{\text {c }}$ EE	GE	Greater/Equal: static "ON" signal when display value is greater or equal preset.
	$J^{-} \ell E$	LE	Lower/Equal: static "ON" signal when display value is lower or equal preset
	$\text { A_ } \quad E E$	GE	Greater/Equal: Impulse output when display overpasses preset
		LE	Lower/Equal: Impulse output when display underpasses preset

Menu	Selection	Text	Description
	ת.rES	Res**)	Impulse output and automatic Reset to zero when display reaches preset 1 .
	- ${ }^{\text {- }}$-5EE	Set**)	Impulse output and automatic setting to preset 1 when display reaches zero
CHAr 3	-5 6E		See Char 1
	- J LE		See Char 1
	- ${ }^{\text {- }}$ - GE		See Char 1
	- ${ }^{-1 / 2}$		See Char 1
	- J ${ }^{-1-2}$		Output switches ON when display reaches the value of Preset 1 - Preset 2 *).
	- ${ }^{\text {H. } 1-2}$		Impulse output when display reaches the value of Preset 1 - Preset 2*)

${ }^{\text {* }}$) Serves for generation of an anticipation signal with a fixed distance to the preset 1 signal. The anticipation automatically follows the setting of preset 1 (trailing preset).
**) Auto-Set and Auto-Reset operation will limit the counting frequency to 1 kHz

Menu	Selection	Text	Description
PrES__		Pres_1	Setting of the preset values uses the texts Pres1 and Pres2 which appear first of all parameters
PrE5_E		Pres_2	
when accessing the menu.			

7. Additional settings for Units with serial interface (0.571.012.EO5)

The basic setup menu contains the main parameters of the serial interface configuration, like Baud Rate, Data Format and Unit Number. The factory settings are shown in parenthesis

Menu	Selection	Text	Description
5-Forn			Serial data format (7 E 1): The first character indicates the number of data bits. The second character specifies Parity "Even" or "Odd" or "none" and the third character indicates the number of Stop bits.
5-6Flud	9600		Baud rate (9600):
	4800		The following Baud rates shown beside can be selected:
	2400		
	1200		
	600		
	19200		
	38480		
$5-U n+t$		S-Unit	Serial Unit Number (11): You can assign any address number between 11 and 99 to your unit. The address must not contain a " 0 " because these numbers are reserved for collective addressing.

Menu	Selection			Text		Description				
5-L in7						Serial Timer (0.100): When the subsequent parameter is set to "Print"mode, this timer generates automatic transmission cycles every x.xxx seconds. The string consists of the following sequence of ASCII characters:				
	+/-	X	X	X	X	X	X	LF	CR	
	sign		6 decade data				line feed			carriage return

Menu	Selection	Text	Description
S-ñod	PC	PC	Serial mode: PC: Communication according to the Drivecom standard protocol ISO 1745*
	Pr ont	Print	Print: see above
5-[adE		S-Code	Serial register code (101): Specifies the code number of the register that should appear in the data string. For readout of the actual measuring value the code number is 101, which with PC mode is represented by the ASCII characters ":" and "1"

* The protocol uses the following string to request for data. The example shows how to request unit number 11 for the content of the register with register code 101
(actual display value)

$\underline{\text { EOT }}$	\cdots	$\underline{\text { AD1 }}$	$\underline{\text { AD2 }}$	$\underline{\mathbf{C 1}}$	$\underline{\mathbf{C 2}}$	$\underline{\text { ENQ }}$	
(04)	(31)	(31)	$(3 A)$	(31)	(05)	Hex-Code	EOT: Control character AD1: Unit address, high byte AD2: Unit address, low byte
$(E O T)$	(1)	(1)	$(:)$	(1)	$(E N Q)$	ASCII-Code	C1: Register code, high byte C2: Register code, low byte
$\underline{00000100}$	$\underline{0011000}$	$\underline{00110001}$	$\underline{0011} 1010$	$\underline{0011000}$	$\underline{00000101}$	Binary	ENQ: Control character

When in our example the measuring data $x x x x$ would have a value of „ -180 ", the unit would respond with the following string:

STX	C1	C2	\underline{x}	\underline{x}	\underline{x}	\underline{x}	ETX	BCC	
(02)	(3A)	(31)	(2D)	(31)	(38)	(30)	(03)	(1C)	Hex-Code
(STX)	(:)	(1)	(-)	(1)	(8)	(0)	(ETX)		ASCII-Code
00000010	00111010	00110001	00101101	00110001	00111000	00110000	00000011	00011100	Binary

Leading zeros will not be transmitted.
BCC represents a „Block Check Character" which results from the Exclusive-OR of all characters between C1 and ETX (inclusively).

With incorrect request strings, the unit only responds STX C1 C2 EOT or just NAK.
Units with serial link also allow setting or resetting the counter by serial command (similar to the external input or front key function). To use the Reset command, you must write the data " 1 " to the register code " 60 " to activate Reset, and " 0 " to release the Reset command again.
The following strings show how to reset a unit with unit No. 11:

Reset ON:

$\underline{\text { EOT... }}$	$\underline{\text { AD1 }}$	$\underline{\text { AD2 }}$	$\underline{\text { STX }}$	$\underline{\mathbf{C 1}}$	$\underline{\mathbf{C 2}}$	$\underline{\text { Dat }}$	$\underline{\text { ETX }}$	$\underline{B C C}$	
(04)	(31)	(31)	(02)	(36)	(30)	(31)	(03)	(34)	$\underline{\text { HEX }}$
$(E O T)$	(1)	(1)	(STX)	(6)	(0)	(1)	ETX	(4)	$\underline{\text { ASCII }}$

Reset OFF:

EOT...	AD1	$\underline{\text { AD2 }}$	$\underline{\text { STX }}$	$\underline{\text { C1 }}$	$\underline{\text { C2 }}$	$\underline{\text { Dat }}$	$\underline{\text { ETX }}$	$\underline{\text { BCC }}$
(04)	(31)	(31)	(02)	(36)	(30)	(30)	(03)	(35)
(EOT)	(1)	(1)	(STX)	(6)	(0)	(0)	ETX	(5)
HEX								
ASCII								

[^0]
8. Set all register to "Default"

At any time you can return all settings to the factory default values.
To do this:

- switch power off
- press the ENTER key on the front
- keep ENTER down while you power up again.

\triangle
This action will reset all parameters to factory default values and your own settings will be lost. You will have to repeat your individual setup procedure. Factory default values are shown in the subsequent parameter tables.

9. Dimensions

Panel cut out: $91 \times 44 \mathrm{~mm}\left(3.583 \times 1.732^{\prime \prime}\right)$

10. Technical Data

Supply voltage AC
Supply voltage DC
Consumption (without sensor)
AC Power
Aux. output for sensors
Inputs
Input currents
Input level HTL
Max. input frequency

Accuracy
Analogue output (0.571.012.E90)

Resolution analogue
Accuracy analogue
Analogue response time
Ambient temperature

Housing
Display
Protection class
Terminals
Switching outputs (0.571.011.EOO)
Conformity and Standards
: 115/230 V (+/- 12,5 \%)
: $24 \mathrm{~V}(17-30 \mathrm{~V})$
: $18 \mathrm{~V}: 120 \mathrm{~mA}, 24 \mathrm{~V}: 95 \mathrm{~mA}, 30 \mathrm{~V}: 80 \mathrm{~mA}$
: 7,5 VA
: 24 V DC, +/-15\%, 150mA (AC + DC supply)
: 3 (PNP/NPN/Namur), A/B = Impulse, C = Reset
: $5,1 \mathrm{~mA} / 24 \mathrm{~V}(\mathrm{Ri}=4,7 \mathrm{kOhms})$
: Low: 0...3,5V, High: 9...35V
: Counter modes: 100 kHz
All other operating modes: 25 kHz Reset input C: 1 kHz (minimum pulse duration $500 \mu \mathrm{sec}$)
: +/-1 ppm +/- 1 Digit
: Current: 0/4...20mA (load 0-270 ohms)
Voltage: $0 . . .+/-10 \mathrm{~V}$ (max. 2 mA)
: 14 Bits + Sign
: 0.1\%
: approx. 7 msec .
: Operation: $0^{\circ}-45^{\circ} \mathrm{C}\left(32-113^{\circ} \mathrm{F}\right)$
Storage: $-25^{\circ}-+70^{\circ} \mathrm{C}\left(-13-158^{\circ} \mathrm{F}\right)$
: Norly UL94 - V-0
: 6 Digit, LED, high- efficiency orange, 15 mm
: Front IP65, Rear IP20
: Signals max. $1.5 \mathrm{~mm}^{2}$, AC power max. $2.5 \mathrm{~mm}^{2}$
: PNP, max. 35 volts, max. 150 mA
: EMC 89/336/EEC: EN 61000-6-2 EN 61000-6-3
LV73/23/EEC: EN 61010-1

11. Parameter List

Description	Text	Min Value	Max - Value	Settings bold = default	Pos.	Char	Ser. Code	Selection
Basic settings								
Operating mode	tYPE	0	4	0	1	0	00	rpm
				1				time
				2				timer
				3				count
				4				speed
NPN / PNP	CHAr	0	1	0	1	0	01	npn
				1				pnp
Brightness	briGht	0	4	0	1	0	02	100
				1				80
				2				60
				3				40
				4				20
Keypad locking	Code	0	2	0	1	0	03	no
				1				all
				2				Preset free
RPM, operation as Tachometer or frequency meter								
Frequency	FrEqu	1	25000	1000	5	0	04	
Display value	diSPL	1	99999	1000	5	0	05	
Decimal point	dPoint	0	5	3	1	0	06	0.000
Wait time to zero	WAit	0,1	99,9	1,0	3	1	07	
Average filter	FiLtEr	0	4	0	1	0	08	off
				1				2
				2				4
				3				8
				4				16
Time, display of backing and processing time								
Display format	diSFor	0	3	0	1	0	09	sec
				1				min
				2				min-sec
				3				min-h
Frequency	FrEqu	1	25000	100	5	0	10	
Display value	diSPL	1	999999	100	6	0	11	
Wait time to zero	WAit	0,1	99,9	5,0	3	1	12	
Average filter	FiLtEr	0	4	0	1	0	13	off
				1				2
				2				4
				3				8
				4				16

Description	Text	Min Value	Max- Value	Settings bold = default	Pos.	Char	Ser. Code	Selection
Timer, stopwatch								
Resolution	bASE	0	6	0	1	0	14	sec - 000
				1				sec - 00
				2				sec - 0
				3				sec
				4				min - 00
				5				min-0
				6				hr.min.s
Start / Stop	StArt	0	2	0	1	0	15	hi - lo
				1				st - sp
				2				ast - sp
Auto-Reset	rESEt	0	1	0	1	0	16	no
				1				yes
Display latch	LAtcH	0	1	0	1	0	17	no
				1				yes
Count, counter operation								
Counter mode	modE	0	5	0	1	0	18	A-B div
				1				A+B
				2				A-B
				3				A_B-1
				4				A_B-2
				5				A_B-4
Scaling factor	FActor	0,0001	9,9999	1,0000	5	4	19	
Set value	SEt	-199999	+999999	0	+/-6	0	20	
Reset / Set	rESEt	0	3	0	1	0	21	no
				1				Front
				2				Ester
				3				FruE
Decimal point	dPoint	0	5	0	1	0	22	
Speed from differential time								
Delay time	timE	1	999999	1000	6	0	23	
Display with delay time	diSPL	1	999999	1000	6	0	24	
Decimal point	dPoint	0	5	0	1	0	25	
Wait time to zero	WAit	0,0	99,9	10,0	3	1	26	

Description	Text	Min Value	Max - Value	Settings bold = default	Pos.	Char	Ser. Code	Selection
Presets (0.571.011.EO0)								
Preset 1	PrES 1	-199999	+999999	10000	+/-6	0	27	
Preset 2	PrES 2	-199999	+999999	5000	+/-6	0	28	
Mode Preset 1	CHAr 1	0	0	0	1	0	29	GE
				1				ILE
				2				7GE
				3				7LE
				4				1 RES
				5				7 SET
Mode Preset 2	CHAr 2	0	5	0	1	0	30	GE
				1				」LE
				2				「7GE
				3				7 LE
				4				1-2
				5				71-2
Hysteresis 1	HYSt1	0	99999	0	5	0	31	
Hysteresis 2	HYSt2	0	99999	0	5	0	32	
Analogue output (0.571.012.E90)								
Analogue begin	An-bEG"	-199999	999999	0	+/-6	0	33	
Analogue end	An-End	-199999	999999	10000	+/-6	0	34	
Analogue mode	A-CHAr	0	3	0	1	0	35	$\pm 10 \mathrm{~V}$
				1				$0 \ldots 10 \mathrm{~V}$
				2				$0 . . .20 \mathrm{~mA}$
				3				$4 \ldots 20 \mathrm{~mA}$
Offset	OFFSEt	-9,999	9,999	0,000	+/-4	3	36	
Gain	GAin	00,00	99,99	10,00	4	2	37	

Description	Text	Min - Value	Max- Value	Settings bold = default	Pos.	Char	Ser. Code	Selection
Serial interface (0.571.012.E05)								
Serial format	S-Form	0	9	0	1	0	92	$0=7 \mathrm{E} 1$
				1				1 = 7E2
				2				$2=701$
				3				$3=702$
				4				$4=7 \mathrm{~N} 01$
				5				$5=7 \mathrm{~N} 02$
				6				$6=8 \mathrm{E} 1$
				7				$7=801$
				8				8 = 8N01
				9				9 = 8N02
Baud rate	S-bAUd	0	6	0	1	0	91	$0=9600$
				1				$1=4850$
				2				$2=2400$
				3				$3=1200$
				4				$4=600$
				5				$5=19200$
				6				$6=38400$
Unit address	S-Unit	0	99	11	2	0	90	-
Serial timer	S-tim	10	9999	100	4	3	38	-
Serial mode	S-mod	0	1	0	1	0	39	0 = PC
				1				1 = print
Code for print	S-CodE	100	120	101	3	0	40	-

[^0]: 000001000011000100110001000000100011011000110000001100000000001100110101 BIN

