

- 1) Preferred type only in conjunction with flange type 2.
- 2) Preferred type only in conjunction with flange type 1.
- 3) Only in conjunction with connection type 2.
- 4) CAN parameters can also be factory pre-set.

Standard mechanical multiturn, optical	Sendix 5868 / 5888 (shaft / hollow sh	aft) CANope	en/CANopenLift
Order code 8.5888 . X Hollow shaft Type	X X X . XX 2 X 0 0 0 . XX 2 X 0 0 0 . XX 2 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g days for a maximum of 10 pieces	. (10 by 10)
 Flange with torque stop = with spring element, long, IP65 = with spring element, long, IP67 = with stator coupling, IP65 ø 65 mm [2.56"] = with stator coupling, IP65 ø 63 mm [2.48"] = with stator coupling, IP67 ø 63 mm [2.48"] = with stator coupling, IP67 ø 63 mm [2.48"] Blind hollow shaft = ø 10 mm [0.39"] 4 = ø 12 mm [0.47"] 5 = ø 14 mm [0.55"] 6 = ø 15 mm [0.59"] # ø 3/8" 9 = ø 1/2" Interface / power supply 2 = CANopen DS301 V4.02, 10 30 V DC 5 = CANopen DS301 V4.02, 10 30 V DC mit 2048 ppr incremental track (TTL-compatible 	 Type of connection network terminal cover 1 eradial cable gland 2 entile connection without bus terminal cover A eradial cable, 2 m [6.56'] PVC B eradial cable, special length PVC *) E 1 x radial M12 connector, 5-pin I x radial M23 connector, 12-pin J 2 x radial M23 connector, 12-pin X sub-D connector, 9-pin Available special lengths (connection type B): 3, 5, 8, 10, 15 m [9.84, 16.40, 26.25, 32.80, 49.21'] order code expansion .XXXX = length in dm ex: 8.5888.542B.2123.0030 (for cable length 3 m) 	 Fieldbus profile 21 = CANopen encod 22 = CANlift DS417 V Options (service 2 = no options 3 = SET button Optional on requ Ex 2/22 surface protection salt spray test 	l er profile DS406 V3.2 1.01 :) :est ction
Mounting accessory for shaft encoders			Order no.
Coupling	bellows coupling ø 19 mm [0.75"] for shaft 6 mm [0 bellows coupling ø 19 mm [0.75"] for shaft 10 mm		8.0000.1102.0606 8.0000.1102.1010
Mounting accessory for hollow shaft encode	ers		Order no.
for torque stops	with fixing thread		8.0010.4700.0000
Connection technology			Order no.
Connector, self-assembly (straight)	coupling M12 for bus in connector M12 for bus out		8.0000.5116.0000 8.0000.5111.0000
Cordset, pre-assembled	M12, for bus in, 6 m [19.68'] PVC cable M12, for bus out, 6 m [19.68'] PVC cable		05.00.6091.A211.006M 05.00.6091.A411.006M

Further accessories can be found in the accessories section or in the accessories area of our website at: www.kuebler.com/accessories.

Additional connectors can be found in the connection technology section or in the connection technology area of our website at: www.kuebler.com/connection_technology.

Only in conjunction with connection type 2.
 CAN parameters can also be factory pre-set.

mechanical multiturn, optical

Sendix 5868 / 5888 (shaft / hollow shaft)

CANopen/CANopenLift

Technical data

of the power supply UL approval

CE compliant acc. to

Mechanica	Mechanical characteristics				
Maximum sp	eed IP65 up to 70°C [158°F] IP65 up to Tmax IP67 up to 70°C [158°F] IP67 up to Tmax	9000 min ⁻¹ , 7000 min ⁻¹ (continuous) 7000 min ⁻¹ , 4000 min ⁻¹ (continuous) 8000 min ⁻¹ , 6000 min ⁻¹ (continuous) 6000 min ⁻¹ , 3000 min ⁻¹ (continuous)			
Starting torq	ue - at 20°C [68°F] IP65 IP67	< 0.01 Nm < 0.05 Nm			
Mass momen	It of inertia shaft version hollow shaft version	4.0 x 10 ⁻⁶ kgm ² 7.5 x 10 ⁻⁶ kgm ²			
Load capacit	y of shaft radial axial	80 N 40 N			
Weight	with bus terminal cover with fixed connection	approx. 0.57 kg [20.11 oz] approx. 0.52 kg [18.34 oz]			
Protection ac	cc. to EN 60529				
	housing side shaft side	IP67 IP65, opt. IP67			
Working tem	perature range	-40°C +80°C [-40°F +176°F] ¹⁾			
Material	shaft/hollow shaft flange housing cable				
Shock resista	ance acc. to EN 60068-2-27	2500 m/s², 6 ms			
Vibration resi	stance acc. to EN 60068-2-6	100 m/s², 55 2000 Hz			
Electrical of	characteristics				
Power supply	Y	10 30 V DC			
Power consu	mption (no load)	max. 100 mA			
Reverse pola	rity protection	yes			

file 224618

EMC guideline 2004/108/EC

RoHS guideline 2011/65/EU

Interface characteristics CANop	en/CANopenLift
Resolution singleturn	1 65536 (16 bit), scaleable default: 8192 (13 bit)
Number of revolutions (multiturn)	max. 4096 (12 bit) scalable only via the total resolution
Total resolution	1 268.435.456 (28 bit), scaleable default: 33.554.432 (25 bit)
Code	binary
Interface	CAN high-speed acc. to ISO 11898, Basic- and Full-CAN CAN specification 2.0 B
Protocol	CANopen profile DS406 V3.2 with manufacturer-specific add-ons or CANlift profile DS417 V1.1
Baud rate	10 1000 kbit/s can be set via DIP switches, software configurable
Node address	1 127 can be set via rotary switches, software configurable
Termination switchable	can be set via DIP switches, software configurable
Incremental track characteristic	s
Output driver	RS422 (TTL-compatible)
Permissible load / channel	max. +/- 20 mA
Signal level HIGH LOW	,,,
Short circuit proof outputs	yes ²⁾
Resolution	2048 ppr

SET button (zero or defined value, option)

Protection against accidental activation.

Button can only be operated with a ball-pen or pencil.

Diagnostic LED (yellow)

LED is ON with the following fault conditions

Sensor error (internal code or LED error) too low voltage, over-temperature

1) Cable version: -30°C ... +75°C [-22°F ... +167°F].

2) Short circuit to 0 V or to output, only one channel at a time, power supply correctly applied.

mechanical multiturn, optical

Sendix 5868 / 5888 (shaft / hollow shaft)

CANopen/CANopenLift

General information about CANopen / CANopenLift

The CANopen encoders support the latest CANopen communication profile according to DS301 V4.02. In addition, device specific profiles such as encoder profile DS406 V3.2 and DS417 V1.1 (for lift applications) are available

The following operating modes may be selected: Polled Mode, Cyclic Mode, Sync Mode. Moreover, scale factors, preset values, limit switch values and many other additional parameters can be programmed via the CAN bus.

When switching the device on, all parameters are loaded from an EEPROM, where they were saved previously to protect them against power-failure.

The following output values may be combined in a freely variable way as PDO (PDO mapping): position, speed, acceleration as well as the status of the working area.

As competitively priced alternatives, encoders are also available with a connector or a cable connection, where the device address and baud rate can be changed and configured by means of the software. The models with bus terminal cover and integrated T-coupler allow for extremely simple installation: the bus and power supply can be easily connected via M12 connectors. The device address can be set via 2 rotary hex switches. Furthermore, another DIP switch allows for the setting of the baud rate and switching on a termination resistor. Three LEDs located on the back indicate the operating or fault status of the CAN bus, as well as the status of an internal diagnostic.

Universal Scaling Function

At the end of the physical resolution of an encoder, **when scaling is active**, an error appears if the division of the physical limit (GP_U) by the programmed total resolution (TMR) does not produce an integer.

The Universal Scaling Function remedies this problem.

CANopen communication profile DS301 V4.02

- Among others, the following functionality is integrated.
- Class C2 functionality.
- NMT slave.
- Heartbeat protocol.
- High resolution sync protocol.
- Identity object.
- Error behaviour object.
- Variable PDO mapping.
- Self-start programmable (power on to operational).
- 3 Sending PDO's.
- Node address, baud rate and CANbus.
- Programmable termination.

CANopen Encoder Profile DS406 V3.2

The following parameters can be programmed:

- Event mode.
- Units for speed selectable (steps/sec or min⁻¹).
- Factor for speed calculation (e.g. circumference of measuring wheel).
- Integration time for the speed value from 1 ... 32.
- 2 working areas with 2 upper and lower limits and the corresponding output states.
- Variable PDO mapping for position, speed, work area status.
 Extended failure management for position sensing with integrated
- temperature control.
- User interface with visual display of bus and failure status 3 LED's.
- Optional 32 CAMs programmable.
- Customer-specific memory 16 Bytes.

CANopen Lift Profile DS417 V1.1

Among others, the following functionality is integrated:

- Car position unit.
- 2 virtual devices.
- 1 virtual device delivers the posititon in absolute measuring steps (steps).
- 1 virtual device delivers the posititon as an absolute travel information in mm.
- Lift number programmable.
- Independent setting of the node address in relation with the CAN identifier.
- Factor for speed calculation (e.g. measuring wheel periphery).
- Integration time for speed value of 1...32.
- 2 work areas with 2 upper and lower limits and the corresponding output states.
- Variable PDO mapping for position, speed, acceleration, work area status.
- Extended failure management for position sensing with integrated
- temperature control.
 User interface with visual display of bus and failure status 3 LED's.
- "Watchdog controlled" device.

All profiles stated here: Key-features

The object 6003h "Preset" is assigned to an integrated key, accessible from the outside.

Series in the contract of the cont	Standard mechani	l cal multiturn, c	optical		Sendix !	5868 / 58	888 (shat	ft / hollo	w shaft)	C	ANope	n/CANo	penLift
2.5Image: 1000 Image: 1000 I	Terminal as	signment											
$ \begin{array}{c c c c c c } 2.5 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	Interface	Type of connection	Cable gland (bu	s terminal c	over with te	erminal box)						
1 1						Bus OUT					Bus IN		
	2, 5	1	Signal:	CAN_GND	CAN_L	CAN_H						CAN_H	CAN_GND
$ \begin{array}{c c c c c c } \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $			Abbreviation:	CG	CL	СН						СН	CG
2.5 A, B Signal: 9V V CAN_L CAN_L CAN_GND Interface Type of connection 2x M12 connector VWH BN VE GN GV 2.5 A, B Signal: V V V CAN_L CAN_GND CAN_GND 2.5 2.7 Fin: 3 2 5 4 1 5 3 2.5 2.6 Fin: 3 2 5 4 1 5 3 3 2 5 4 1 5 3 2 5 4 1 90 V +V CAN_L CAN_L CAN_GND 2 3 3 5 3 3 4 5 3 3 4 5 4 1 4 5 3 3 3 3 3 3 3 4 5 4 1 4 5 4 1 5 4	Interface	Type of connection	Cable (isolate u	nused wires	individuall [,]	y before ini	tial start-up)	1	1	1	1	1
1111111InterfaceType of connection2x MI2 connector (3x MI2 connector with interface 5)2,52, FSignal:0V+VCAN_LCAN_LCAN_L & CAN_BND990V+VCAN_LCAN_LCAN_BND2990V+VCAN_LCAN_BND2990V+VCAN_LCAN_BND2990V+VCAN_LCAN_BND2990V+VCAN_LCAN_BND2990V+VCAN_LCAN_BND2990V+VCAN_LCAN_BND29990V+VCAN_LCAN_BND29990V+VCAN_LCAN_BND29990V+VCAN_LCAN_BND29990V+VCAN_LCAN_BND211234541123454142.5ESignal:0V+VCAN_LCAN_BND2123254112.5FSignal:0V+VCAN_LCAN_BND211012273222.51Signal:0V+VCAN_LCAN_BN						Bus IN							
Interface Type of connection 2 x M12 connector (3 x M12 connector with interface 5) 2,5 2,F Signal: 0 V <th< td=""><td>2, 5</td><td>А, В</td><td>Signal:</td><td></td><td></td><td>CAN_L</td><td>CAN_H</td><td>CAN_GND</td><td></td><td></td><td></td><td></td><td></td></th<>	2, 5	А, В	Signal:			CAN_L	CAN_H	CAN_GND					
$\begin{array}{c c c c c c c } 2.5 & X \\ \hline X \\ $			Cable colour:	WH	BN	YE	GN	GY					
$\begin{array}{c c c c c c } 2,5 & \begin{array}{c c c c c } & & & & & & & & & & & & & & & & & & &$	Interface	Type of connection	2 x M12 connec	tor (3 x M12	2 connector	with interf	ace 5)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Bus OUT				2		_1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Signal:			CAN_L	CAN_H)	CAN_GND		-		-4	
$\begin{array}{ c c c c } & & & & & & & & & & & & & & & & & & &$	2.5	2.5	Pin:	3	2	5	4	1		5		3	
$\begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ζ, 5	Z, F				Bus IN				2	<u> </u>	<u>ِ1</u>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Signal:			CAN_L	CAN_H	CAN_GND		3-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Pin:	3	2	5	4	1		4		5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Inc	remental tr	ack			1		2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	2	Signal:	A	Ā	В	B	0 V		-	3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Pin:	1	2	3	4	5		4		` 5	
2,5ESignal:0 V+VCAN_LCAN_HCAN_GNDPin:32541InterfaceType of connection2 x M23 connector2,5J $\frac{1}{00 \text{ connection}}$ $2 x M23 connector2,5J\frac{1}{00 \text{ connection}}2 x M23 connectorPin:1012273Pin:<$	Interface	Type of connection	1 x M12 connec	tor									
$\begin{array}{c c c c c c } \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$						Bus IN				2	_	<u>_</u> 1	
InterfaceType of connection2 x M23 connector2,5J I <td>2, 5</td> <td>E</td> <td>Signal:</td> <td></td> <td></td> <td>CAN_L</td> <td>CAN_H</td> <td>CAN_GND</td> <td></td> <td>3-</td> <td></td> <td></td> <td></td>	2, 5	E	Signal:			CAN_L	CAN_H	CAN_GND		3-			
$2,5$ J J J $\frac{1}{9}$ $\frac{1}{9$			Pin:	3	2	5	4	1		4		5	
$2,5$ J J J $\frac{1}{9}$ $\frac{1}{9$	Interface	Type of connection	2 x M23 connec	tor									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Bus OUT							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Signal:			CAN_L	CAN_H	CAN_GND		//			
2,5 J Signal: $0 \vee + V$ CAN_L CAN_H CAN_GND Pin: 10 12 2 7 3 Interface Type of connection 1 x M23 connector 2,5 I Signal: $0 \vee + V$ CAN_L CAN_H CAN_GND Pin: 10 12 2 7 3 $U \vee + V$ CAN_L CAN_H CAN_GND Pin: 10 12 2 7 3 $U \vee + V$ CAN_L CAN_H CAN_GND Pin: 10 12 2 7 3 Interface Type of connection Sub-D connector 2,5 K Signal: $0 \vee + V$ CAN_L CAN_H CAN_GND $U \vee + V$ CAN_L CAN_H CAN_GND $U \vee + V$ CAN_L CAN_H CAN_GND $U \vee + V$ CAN_L $U \vee + V$ CAN_L $U \vee + V$			Pin:				7	3		2	• • •		
$\begin{array}{c c c c c c c c } \hline \hline & $	2, 5	J						1	2	х ((з	10 12	())	
Pin:1012273InterfaceType of connection1 x M23 connector2,5ISignal: $0 V + V \\ power supply power supply power supplyCAN_LCAN_HCAN_GNDPin:1012273InterfaceType of connectionSub-D connectorBus IN2,5KSignal:0 V + V \\ power supply power$			Signal:				CAN_H	CAN_GND			4 • <u>5</u> 6	//	
2, 5ISignal: $0 V$ power supply power supply Pin: $O V$ power supply Pin: $O V$ power supply Pin: $O V$ power supply Pin: $O V$ Pin: V CAN_L CAN_L CAN_L CAN_GND CAN_GNDInterfaceType of connectionSub-D connector2, 5KSignal: $0 V$ power supply V Power supply2, 5KSignal: $0 V$ power supply			Pin:				7	3					
2, 5ISignal: $0 V$ power supply power supply Pin: $O V$ power supply Pin: $O V$ power supply Pin: $O V$ power supply Pin: $O V$ Pin: V CAN_L CAN_L CAN_L CAN_GND CAN_GNDInterfaceType of connectionSub-D connector2, 5KSignal: $0 V$ power supply V Power supply2, 5KSignal: $0 V$ power supply	Interface	Type of connection	1 x M23 connec	tor									
2,5 I Signal: $0V + V$ CAN_L CAN_H CAN_GND power supply power supply 2 7 3 Interface Type of connection Sub-D connector 2,5 K Signal: $0V + V$ CAN_L CAN_H CAN_GND $V = V$ power supply power supply power supply contract CAN_H CAN_GND		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Bus IN								
Pin:1012273InterfaceType of connectionSub-D connector2, 5KSignal: $0 V$ power supply VV power supplyCAN_LCAN_HCAN_GND	2, 5	I	Signal:				CAN_H	CAN_GND		6	1 9 8	$\langle \rangle$	
2,5 K Signal: $\begin{array}{c c} & & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & & \\$			Pin:			2	7	3			10 12	7))	
2,5 K Signal: $\begin{array}{c c} & & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & & \\$											4.5.6	//	
2,5 K Signal: $\begin{array}{c c} & & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & & \\$	Interface	Type of connection	Sub-D connect	or				1					
2,5 K Signal: 0 V +V CAN_L CAN_H CAN_GND						Bus IN							
	2, 5	к	Signal:			CAN_L	CAN_H	CAN_GND				5	
			Pin:				7	3			6789		

mechanical multiturn, optical

Sendix 5868 / 5888 (shaft / hollow shaft)

CANopen/CANopenLift

Dimensions shaft version, with removable bus terminal cover Dimensions in mm linchl

Clamping flange, ø 58 [2.28] Flange type 1 and 3

(drawing with 2 x M12 connector)

L

10 [0.39]

20 [0.79]

7/8"

7/8"

Fit

h7

f7

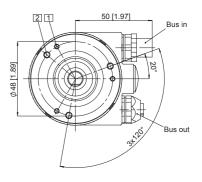
h7

h7

1 3 x M3, 6 [0.24] deep 2 3 x M4, 8 [0.32] deep

D

6 [0.24]


10 [0.39]

1/4"

3/8"

	1 9		<u></u>
Ø 58 [2.28] Ø 53 [2.12] Ø 36 [1.41]			40 [1.57] Ø60 [2.36]
0582 0532 03611	•		40 [1.57] Ø60 [2.3
10 [0.39]			14,5 [0.57]
3 [0.12]			14,0 [0.07]
	3 [0.12]	-	
	76 [3.0]		
	77,2 [3.	03]]

пг

Synchro flange, ø 58 [2.28] Flange type 2 and 4 (drawing with cable)

1 M4, 6 [0.24] deep

14.5 [0.57] 14.5 [0.57] 15.5

D	L	Fit
6 [0.24]	10 [0.39]	h7
10 [0.39]	20 [0.79]	f7
1/4"	7/8"	h7
3/8"	7/8"	h7

Square flange, 🗌 63.5 [2.5] Flange type 5 and 7

L

10 [0.39]

20 [0.79]

7/8"

7/8"

Fit

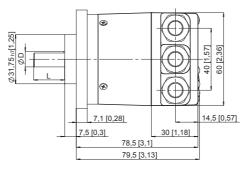
h7

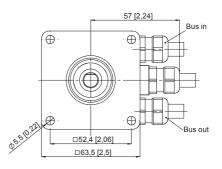
f7

h7

h7

(drawing with cable)


D


6 [0.24]

10 [0.39]

1/4"

3/8"

Standard mechanical multiturn, optical Sendix 5868 / 5888 (shaft / hollow shaft) **CANopen/CANopenLift** Dimensions shaft version, with fixed connection Dimensions in mm [inch] Synchro flange, ø 58 [2.28] 60,6[2,39] 1 Flange type 2 and 4 (drawing with M23 connector) 8 æ 1 M4, 6 [0.24] deep T Ø50 [1,97 Ø58 [2,28] ()00 Ы 8 3 [0,12] 13,25[0,52] 20 Ø42 [1,65 3 [0,12] D Fit L 4 [0,16] 6 [0.24] 10 [0.39] h7 69,5[2,74] 10 [0.39] 20 [0.79] f7 70,7 2,78 1/4" 7/8" h7 7/8" 3/8' h7 Synchro flange, ø 58 [2.28] Flange type 2 and 4 (drawing with Sub-D connector) 41,7[1,64] 14,25[0,56] 1 1 M4, 6 [0.24] deep 2 R 2 2 x 4/40 UNC; 3.0 [0.12] deep 97 ð 58 [2,28] 25 0,98 550 [1. Ć B Ø 3 [0,12] 2° 3 [0,12] Ø42 [1,65] D Fit 4 [0,16] 10 [0.39] 69,5[2,74] 6 [0.24] h7 70,7[2,78] 10 [0.39] 20 [0.79] f7 1/4" 7/8" h7 3/8" 7/8" h7 Square flange, 🗌 63.5 [2.5] Flange type 5 and 7 60,6[2,39] (drawing with 2 x M23 connector) 13,25[0,52] Bus in \oplus \oplus ۱ŀ Ø31.75 1.25 h 5 ЦØ Ø5,5[0,22] E 28[\otimes h ⊕ \oplus Bus out D L Fit 7,1[0,28] 52,4[2,06 6 [0.24] 10 [0.39] 7,5[0,3] h7

62[2,44]

63,2[2,49]

10 [0.39]

1/4"

3/8"

20 [0.79]

7/8"

7/8"

f7

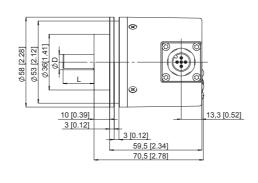
h7

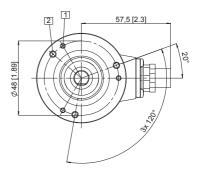
h7

63,5[2,5]

Standard mechanical multiturn, optical

Sendix 5868 / 5888 (shaft / hollow shaft)

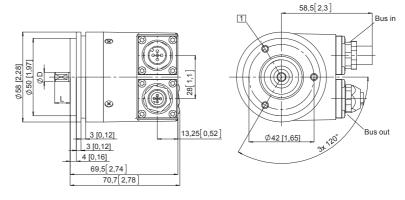

CANopen/CANopenLift


Dimensions shaft version, with fixed connection Dimensions in mm [inch]

Clamping flange, ø 58 [2.28] Flange type 1 and 3

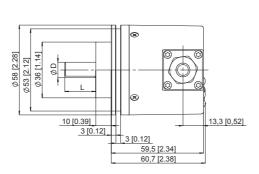
(drawing with 1 x M12 connector)

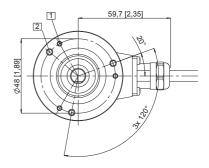
1 3 x M3, 6 [0.24] deep 2 3 x M4, 8 [0.32] deep



U	L	T IL
6 [0.24]	10 [0.39]	h7
10 [0.39]	20 [0.79]	f7
1/4"	7/8"	h7
3/8"	7/8"	h7

Synchro flange, ø 58 [2.28] Flange type 2 and 4 (drawing with M12 connector)


1 M4, 8 [0.32] deep



D	L	Fit
6 [0.24]	10 [0.39]	h7
10 [0.39]	20 [0.79]	f7
1/4"	7/8"	h7
3/8"	7/8"	h7

Clamping flange, ø 58 [2.28] Flange type 1 and 3 (drawing with cable)

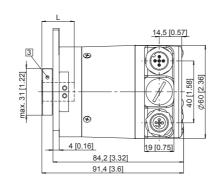
1 3 x M3, 6 [0.24] deep 2 3 x M4, 8 [0.32] deep

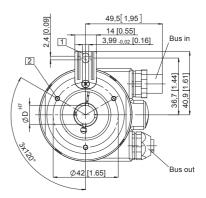
D	L	Fit
6 [0.24]	10 [0.39]	h7
10 [0.39]	20 [0.79]	f7
1/4"	7/8"	h7
3/8"	7/8"	h7

Standard

mechanical multiturn, optical

Sendix 5868 / 5888 (shaft / hollow shaft)

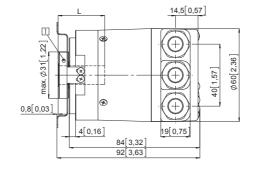

CANopen/CANopenLift

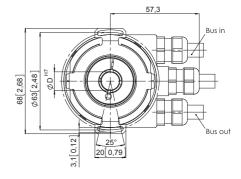

Dimensions hollow shaft version (blind hollow shaft), with removable bus terminal cover Dimensions in mm [inch]

Flange with spring element, long Flange type 1 and 2

(drawing with 2 x M12 connector)

- 1 Torque stop slot, recommendation: cylindrical pin DIN 7, ø 4 [0.16]
- 2 M3, 5.5 [0.21] deep
- 3 Recommended torque for the clamping ring 0.6 Nm
- L: Insertion depth for blind hollow shaft: 30 [1.18]

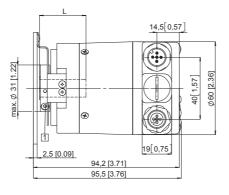


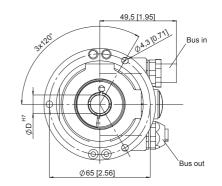


Flange with stator coupling, ø 63 [2.48]

Flange type 5 and 6 Pitch circle diameter for fixing screws 63 [2.48] (drawing with cable)

- 1 Recommended torque for the
- clamping ring 0.6 Nm L: Insertion depth for blind hollow shaft: 30 [1.18]





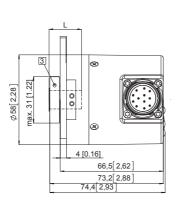
Flange with stator coupling, ø 65 [2.56] Flange type 3 and 4

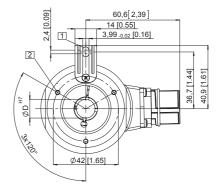
Pitch circle diameter for fixing screws 65 [2.56] (drawing with 2x M12 connector)

- 1 Recommended torque for the clamping ring 0.6 Nm
- L: Insertion depth for blind hollow shaft: 30 [1.18]

mechanical multiturn, optical

Sendix 5868 / 5888 (shaft / hollow shaft)

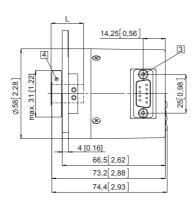

CANopen/CANopenLift

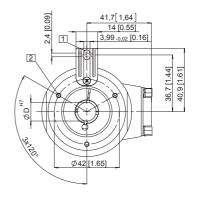

Dimensions hollow shaft version (blind hollow shaft), with fixed connection Dimensions in mm [inch]

Flange with spring element, long Flange type 1 and 2

(drawing with M23 connector)

- 1 Torque stop slot, recommendation: cylindrical pin DIN 7, ø 4 [0.16]
- 2 M3, 5.5 [0.21] deep
- 3 Recommended torque for the clamping ring 0.6 Nm
- L: Insertion depth for blind hollow shaft: 30 [1.18]

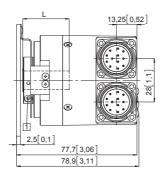


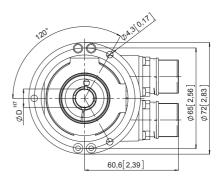


Flange with spring element, long Flange type 1 and 2

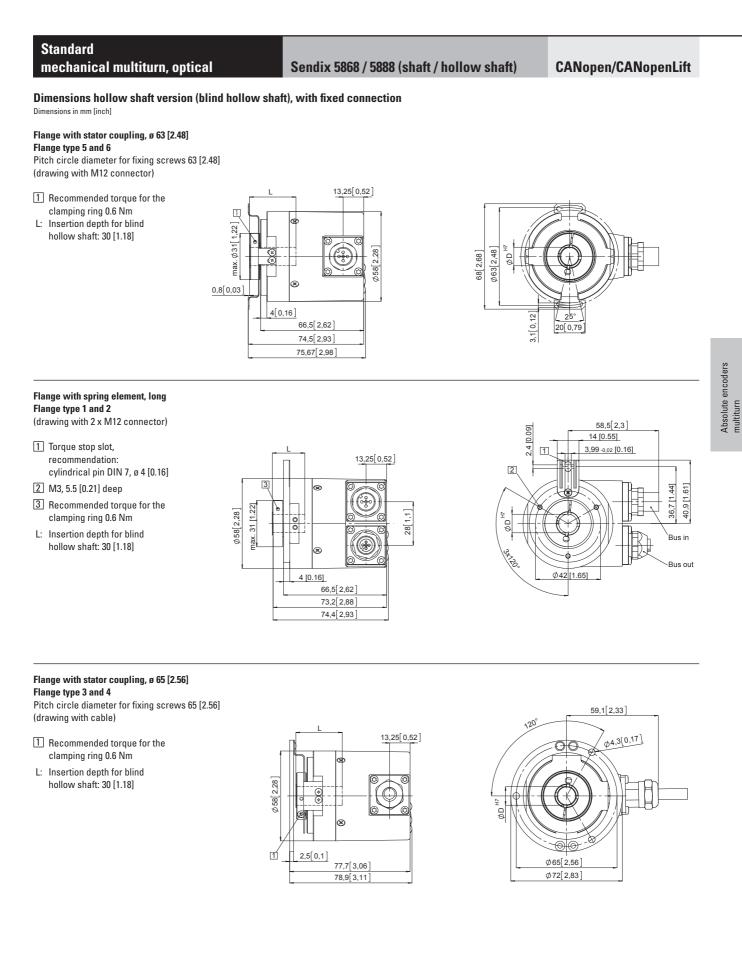
(drawing with Sub-D connector)

- 1 Torque stop slot, recommendation: cylindrical pin DIN 7, ø 4 [0.16]
- 2 M3, 5.5 [0.21] deep
- 3 2 x 4/40 UNC; 3.0 [0.21] deep
- 4 Recommended torque for the clamping ring 0.6 Nm
- L: Insertion depth for blind hollow shaft: 30 [1.18]





Flange with stator coupling, ø 65 [2.56] Flange type 3 and 4


Pitch circle diameter for fixing screws 65 [2.56] (drawing with 2 x M23 connector)

- 1 Recommended torque for the clamping ring 0.6 Nm
- L: Insertion depth for blind hollow shaft: 30 [1.18]

