Power analyzers and Energy Meters Power Analyzer Type WM14-DIN

- Optional RS422/485 serial port
- Alarms (visual only) VLN An

Product Description

3-phase power analyzer with built-in programming keypad. Particularly recommended for displaying the main electrical variables.

Housing for DIN-rail mounting, (front) protection degree IP40, and optional RS485 serial port.

- Class 2 (active energy)
- Class 3 (reactive energy)
- Accuracy ± 0.5 F.S. (current/voltage)
- Power analyzer
- Display of instantaneous variables: 3x3 digit
- Display of energies: 8+1 digit
- System variables and phase measurements: W, W dmd , var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, Admd $^{\text {d }}$ Hz
- $\mathbf{A}_{\text {max }}, \mathbf{A}_{\text {dmd max }}, \mathbf{W}_{\text {dmd max }}$ indication
- Energy measurements: kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: 24V, 48V, 115V, 230V 50-60Hz; 18 to 60VDC
- Protection degree (front): IP40
- Front dimensions: $107.8 \times 90 \mathrm{~mm}$

Type Selection

Range codes
AV5: 400/660 $\mathrm{V}_{\mathrm{L}-\mathrm{L}} / 5(6) \mathrm{AAC}$
VL-N: 185 V to 460 V
VL-L: 320 V to 800 V
AV6: $100 / 208 \mathrm{~V}_{\mathrm{L}-\mathrm{L}} / 5(6) \mathrm{AAC}$
VL-N: 45 V to 145 V
VL-L: 78 V to 250 V
Phase current: 0.03 A to 6 A
Neutral current: 0.09 to 6A

System

3 : 1-2-3-phase, balanced/unbalanced load, with or without neutral

Input specifications

Rated inputs	
Current	3 (shunt)
Voltage	4
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL
Current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(0.5 \% \text { FS }+1 \mathrm{DGT}) \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Neutral current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1.5 \% \text { FS }+1 \mathrm{DGT}) \\ & 0.09 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Phase-phase voltage	$\pm(1.5 \%$ FS + 1 DGT)
Phase-neutral voltage	$\pm(0.5 \% \mathrm{FS}+1$ DGT)
Active and Apparent power,	0.25 to 6A: $\pm(1 \%$ FS +1DGT); 0.03 to $0.25 \mathrm{~A}: \pm(1 \%$ FS +5 DGT)
Reactive power	0.25 to $6 \mathrm{~A}: \pm(2 \% \mathrm{FS}+1 \mathrm{DGT})$; 0.03 A to $0.25 \mathrm{~A}: \pm(2 \% \mathrm{FS}+5 \mathrm{DGT})$
Active energy	Class 2 (start up: 30 mA)
Reactive energy	Class 3 (I start up: 30 mA)
Frequency	$\pm 0.1 \% \mathrm{~Hz}$ (48 to 62 Hz)
Additional errors	
Humidity	<0.3\% FS, 60\% to 90\% RH
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	1400 samples/s @ 50Hz

CARLO GAVAZZI

RS485 Serial Port Specifications

RS422/RS485 (on request) Type	Multidrop bidirectional (static and	Data (bidirectional) Dynamic (reading only)	System, phase variables and energies
	dynamic variables)	Static (writing only)	All configuration parameters
Connections	2 or 4 wires, max. distance	Data format	1 start bit, 8 data bit,
	1200m, termination directly		no parity, 1 stop bit
	on the instrument	Baud-rate	$9600 \mathrm{bit} / \mathrm{s}$
Addresses	1 to 255, key-pad selectable		
Protocol	MODBUS/JBUS		

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected		Page 4: AL1 dmd, A L2 dmd, A L3 dmd Page 5: An + An alarm Page 6: W L1, W L2, W L3 Page 7: PF L1, PF L2, PF L3 Page 8: var L1, var L2, var L3 Page 9: VA L1, VA L2, VA L3
System selection	3 -phase with or without n, unbal. 3-phase balanced 3-phase ARON 2-phase Single phase		Page 11: VA dmd, W dmd, Hz Page 12: W dmd max Page 13: Wh Page 14: varh Page 15: VL-L \sum, PF Σ
Transformer ratio CT VT	$\begin{aligned} & 1 \text { to } 999 \\ & 1.0 \text { to } 99.9 \end{aligned}$		VLN Alarm Page 16: A max Page 17: A dmd max
Filter			Page 18: working hours
Operating range Filtering coefficient Filter action	0 to 99.9% of the input electrical scale 1 to 16 Measurements, alarms, serial out. (fundamental var: V,	Alarms	Programmable, for the ViN \sum and An (neutral current). Note: the alarm is only visual, by means of LED on the front of the instrument.
Displaying 3-phase system with neutra	Up to 3 variables per page Page 1: V L1, V L2, V L3 Page 2: V L12, V L23, V L31 Page 3: AL1, AL2, AL3	Reset	Independent alarm ($\mathrm{VL} \Sigma$, An) max: A dmd, W dmd all energies (Wh, varh)

Power Supply Specifications

Auxiliary power supply

```
230VAC
-15+10%, 50-60Hz
115VAC
-15+10%, 50-60Hz
48VAC
-15+10%, 50-60Hz
```

	24 VAC
	$-15+10 \%, 50-60 \mathrm{~Hz}$
	18 to 60 VDC
Power consumption	AC: 4.5 VA
	DC: 4 W

General Specifications

Operating temperature	0° to $+50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ ($\mathrm{RH}<90 \%$ non condensing)		measuring inputs and RS485. $4 \mathrm{kVAC}, 500 \mathrm{VDC}$ between
Storage temperature	-10° to $+60^{\circ} \mathrm{C}\left(14^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$		power supply and RS485
	(RH < 90\% non condensing)	Dielectric strength	4 kVAC (for 1 min)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4kVAC, 500VDC between measuring inputs and power supply. 500VAC/DC between	Emissions	EN50084-1 (class A) residential environment, commerce and light industry

General Specifications (cont.)

Immunity	EN61000-6-2 (class A) industrial environment.	Material	ABS
Pulse voltage (1.2/50 $\mathrm{s}_{\text {) }}$	EN61000-4-5		self-extinguishing: UL 94 V-0
Safety standards	IEC60664, EN60664	Mounting	DIN-RAIL
Approvals	CE, UL and CSA	Protection degree	Front: IP40 (standard)
Connections 5(6) A Max cable cross sect. area	Screw-type $2.5 \mathrm{~mm}^{2}$	Weight	Connections: IP20 Approx. 400 g (pack. incl.)
Housing Dimensions (WxHxD)	$107.8 \times 90 \times 64.5 \mathrm{~mm}$		

Display pages

Display variables in a 3-phase system with neutral

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Decimal point blinking on the right of the display
3	A L1	A L2	A L3	
4	A L1 dmd	A L2 dmd	A L3 dmd	dmd = demand (integration time selectable from 1 to 30 minutes)
5	An	AL.n		AL.n if neutral current alarm is active
6	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
7	PF L1	PF L2	PF L3	
8	var L1	var L2	var L3	Decimal point blinking on the right of the display if generated power
9	VA L1	VA L2	VA L3	
10	VA system	W system	var system	
11	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
12		W dmd MAX		Maximum sys power demand
13	Wh (MSD)	Wh	Wh (LSD)	The total indication is given in max 3 groups of 3 digits.
14	varh (MSD)	varh	varh (LSD)	The total indication is given in max 3 groups of 3 digits.
15	V LL system	AL.U	PF system	AL.U $=$ is activated only if one of VLN is not within the set limits.
16	A MAX			max. current among the three phases
17	A dmd max			max. dmd current among the three phases
18	h			hour counter

MSD: most significant digit
LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15933453.7 kWh
2) Example of kvarh visualization:

This example is showing 3553944.9 kvarh

CARLO GAVAZZI

Waveform of the signals that can be measured

Figure A

Sine wave, undistorted

Fundamental content Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$
100\%
0\%
$1.1107|\overline{\mathrm{~A}}|$

Figure B
Sine wave, indented
Fundamental content
Harmonic content
0...90\%

Frequency spectrum: 3rd to 16th harmonic Additional error: <1\% FS

Figure \mathbf{C}
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10...30\%

Frequency spectrum: 3rd to 16th harmonic Additional error: $<0.5 \%$ FS

Accuracy

Wh, accuracy (RDG) depending on the current

varh, accuracy (RDG) depending on the current

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right) \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$

Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$V A r_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$
System variables
Equivalent 3-phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} * \sqrt{3}$
3-phase reactive power
$V A r_{\Sigma}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
3-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

Used calculation formulas (cont)

Energy metering

Where:
i = considered phase (L1, L2 or L3)
$\mathrm{P}=$ active power
$\mathrm{Q}=$ reactive power
$t_{1}, t_{2}=$ starting and ending time points of consumption recording
$\mathrm{n}=$ time unit
$\Delta t=$ time interval between two successive power consumptions
$n_{1}, n_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

NOTE: the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.

RS485 serial connection	Fig. 7
	PC
$R x+\square T x+\square T x+$	
$\begin{aligned} & R x- \\ & T x+ \\ & T x+ \end{aligned}=\begin{aligned} & R x- \\ & T x+ \\ & R x+ \\ & R x+ \end{aligned}$	
$T x-T x-\quad-\quad R x$	
[1] [2] [3]	
1-Last instrument	
2-1...n Instrument	
3-SIU-PC	
4-wire connection	

Front Panel Description

○ $\overline{\text { OOOOOOOOOOOOOOOO } 0 ~}$

000000000000000000

1. Key-pad

To program the configuration parameters and the display of the variables.
S
Key to enter programming and confirm selections;

Keys to:

- programme values;
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

Dimensions and Panel Cut-out

107.8 mm

32.2 mm
50.1 mm
64.5 mm

Abbreviation		Description
LCD	$=$	Liquid Crystal Display
W	$=$	Active power
VA	$=$	Reactive power
var	$=$	Voltage phase to phase
VLL	$=$	Voltage phase to neutral
VLN	$=$	Part per milion
ppm	$=$	Basic current
Ib	$=$	Daximum current
Imax	$=$	Current Transformer
dmd	$=$	Voltage Transformer
CT	$=$	Neutral current
VT	$=$	True Root means square
An	$=$	Power Factor
TRMS	$=$	Frequency
PF	$=$	Total Harmonic Distortion
Hz	$=$	Active Energy
THD	$=$	Total Active Energy
Wh	$=$	Partial Energy
Wh total	$=$	Reactive Energy
Wh partial	$=$	Total Reactive Energy
varh	$=$	Partial Reactive Energy
varh total	$=$	Relative Humidity
varh partial	$=$	Software
R.H.	$=$	Hardware
SW	$=$	Demanded Power
HW	$=$	Demanded Apparent Power
Wdmd	$=$	Maximum current
VAdmd	$=$	Maximum Demanded Power
Amax	$=$	Average Power Factor
Wdmd max		
PF avg		

